ISSN e:2007-4034 / ISSN print: 2007-4034

English | Español

     

 
 
 
 
 
 
 
 

Vol. 22, issue 2 May - August 2016

ISSN: ppub: 1027-152X epub: 2007-4034

Review article

Moringa (Moringa oleifera Lam.): potential uses in agriculture, industry and medicine

http://dx.doi.org/10.5154/r.rchsh.2015.07.018

Velázquez-Zavala, Minerva 1 ; Peón-Escalante, Ignacio E. 1 ; Zepeda-Bautista, Rosalba 1 ; Jiménez-Arellanes, María Adelina 2 *

  • 1Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Zacatenco. Unidad Profesional ‘Adolfo López Mateos’, col. Lindavista, Ciudad de México, C. P. 07738, MÉXICO.
  • 2Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, av. Cuauhtémoc 330, col. Doctores, del. Cuauhtémoc, Ciudad de México, C. P. 06720, MÉXICO.

adelinajim08@prodigy.net.mx, tel.: 56 27 69 00 ext. 21367 (*Corresponding author)

This is an open-access article distributed under the terms of the Creative Commons Attribution License view the permissions of this license

Abstract

The aim of this review was to analyze the scientific information on Moringa oleifera Lam. in terms of its distribution, chemical composition and characterization, which allows backing up its medicinal, agricultural, livestock and industrial uses. The moringa is a tree native to India and introduced into the Americas. Its growth habitat is tropical (< 2000 masl). Proteins, fiber, carbohydrates, amino acids, vitamins, minerals and secondary metabolites (carotenoids and tocopherols) have been quantified in the plant, which partly explains its uses as food, a disease treatment (respiratory, gastrointestinal, inflammatory, cardiac, nutritional and skin ailments), a soil improver, raw material for the food and cosmetics industries and for the treatment of contaminated water. The results allowed identifying the attributes and applications of moringa, as well as the need for specific studies to enhance its production and application technology for the benefit of the consumer.

Keywords:medicinal plant; food; fodder; agro-industrial uses

Introduction

Moringa oleifera Lam. is native to the Himalayas (Sanjay & Dwivedi, 2015). As an edible species it was introduced into the Americas in the nineteenth century (Falasca & Bernabé, 2008), or perhaps in colonial times from the Philippines by seamen crewing the so-called Nao de China route between Manila and Acapulco (Olson & Fahey, 2011). It is one of the 13 identified species of the family Moringaceae, belonging to the genus Moringa. It is identified by its pinnate leaves and long, woody pod, which when mature opens into three valves which contain the seeds with three wings (Olson & Fahey, 2011). This plant is consumed as food for its nutritional value, and according to Ayurvedic medicine (Singh, 2012a) it is attributed with properties for the treatment of certain ailments such as asthma, epilepsy, eye and skin diseases, fever and hemorrhoids (Sanjay & Dwivedy, 2015). The seed is used to treat river water with suspended solids and groundwater (Aziz, Jayasuriya, & Fan, 2015; Lijesh & Malhotra, 2016; Sasikala & Muthurama, 2015), and as a source of oil for biodiesel production (Mofijur et al., 2014; Rahman et al., 2014; Sharma, Rashid, Anwar, & Erhan, 2009).

In moringa, proteins, fiber, carbohydrates, amino acids, vitamins, minerals (Amaglo et al., 2010; Asiedu-Gyekye, Frimpong-Manso, Awortwe, Antwi, & Nyarko, 2014), secondary metabolites (carotenes and tocopherols) (Amaglo et al., 2010; Cheehpracha et al., 2010) and some minor metabolites (Föster, Ulrich, Schreiner, Müller, & Mewis, 2015) have been identified; this indicates that it can be raw material for the food, balanced animal feed and cosmetics industries (Aney, Rashmi, Maushumi, & Kiran, 2009).

Therefore, the aim of this review was to analyze the scientific information on Moringa oleifera Lam. in terms of its distribution, botanical and agronomic characterization, chemical composition, pharmacological characteristics and medicinal, agro-industrial, biofuel and water treatment uses, which allow supporting the various properties attributed to it.

Taxonomy and botanical characteristics

Moringa oleifera (Familia Moringaceae) is one of 13 species of the genus Moringa. It is identified by the fruit in the form of a long, woody pod, which when mature opens into three valves and contains tri-valve seeds with longitudinal wings. Its pinnate leaves are divided into leaflets arranged on a rachis. The flowers are zygomorphic with five petals, five sepals, five functional stamens and several staminodes; they have pedicels and axillary inflorescences. The plant has erect stems and tuberous roots (Olson, 2010; Olson & Fahey, 2011). The tree can reach up to 10 m in height (Paliwal, Sharma, & Pracheta, 2011).

Geographic origin and distribution

Moringa oleifera is originally from the Himalayas (Kumar, 2013; Sanjay & Dwivedi, 2015), and is native to India, Pakistan, Bangladesh and Afghanistan (Fahey, 2005). Its distribution has spread to Southeast Asia, Western Asia, the Arabian Peninsula, East and West Africa and islands in the Indian and Pacific oceans. In the Americas it is found from southern Florida (USA) to Argentina, and on the islands of the Caribbean and West Indies (Olson, 2010; Paliwal et al., 2011). In Mexico it is found on the Pacific coast from Baja California and Sonora to Chiapas (Olson & Fahey, 2011). Recently, Olson and Fahey (2011) reported the introduction of this plant into the Americas, as an edible species, from the Philippines by the crews of the Nao de China; however, Falasca and Bernabé (2008) argue that it arrived during the nineteenth century.

Agronomic characteristics

M. oleifera grows in tropical areas (in low-altitude places, < 2000 masl) and in different types of soil (clayey and sandy), except in poorly-drained ones. It is a plant that tolerates drought conditions, but water stress (minimum annual rainfall of 250 mm) affects its growth (Dubey, Dora, Kumar, & Gulsan, 2013). It is propagated by seed and stake (Nouman et al, 2014.); peeling is not necessary for the seeds to germinate (Padilla, Fraga, & Suárez, 2012).

Due to its composition and climatic conditions, the plant is affected by various pests (ants, zoompopos and Fusarium species) (Padilla et al., 2012). On the other hand, the application of nitrogen fertilizers to the plant increases its biomass production (Mendieta, Spörndly, Reyes, Salmerón, & Halling, 2012), and biofertilizers improve its ability to metabolize nutrients and increase its growth (Zayed, 2012).

The geographical area and growing season influence the synthesis and concentration of metabolites due to soil type, climate, fertilization and water availability (Iqbal & Bhager, 2006; Anwar & Rashid, 2007; Melesse, Steingass, Boguhn, Schollenberger, & Rodehutscord, 2012; Dubey et al., 2013; Föster et al., 2015). In this regard, further studies need to be conducted to generate production technology for moringa, where agronomic management and evaluation of the quality of the product (leaf, stem, root and seed) are included.

Chemical composition

Nutritional

In Asia, the leaf, fresh pod (fruit) and seed of M. oleifera are consumed, and the root is used as a condiment (Omotesho et al., 2013). Table 1 shows the nutritional content with variations attributable to the collection areas. Proteins, fiber, carbohydrates, amino acids, vitamins, carotenes, tocopherols and minerals (Tables 2 and 3) have been identified in the plant, and, as can be seen, the most abundant element is potassium (Abbas, 2013; Abdull, Ibrahim, & Kntayya, 2014; Amaglo et al., 2010; Asiedu-Gyekye et al., 2014; Ayerza, 2012; Dhakar et al., 2011; Sanjay & Dwivedy, 2015; Yameogo, Bengaly, Savadogo, Nikiema, & Traore, 2011). The oil obtained from the seeds is nutritionally valuable and suitable for frying due to its stability and high oleic acid content. In the leaf, linoleic acid is the most abundant acid, while in the rest of the plant it is palmitic acid (Table 4) (Sabo-Mohamed, Long, Lai, Syed-Muhammad, & Mohd- Ghazali, 2007) and omega 3 and 6 acids (Ayerza, 2012). Mmoringa has been recommended by the United Nations (UN) to supplement the human diet (Ashworth & Ferguson, 2008). Some studies show that intake is safe at up to 1 g∙kg-1 b. wt. (Asare et al., 2012).

Table 1. Nutritional content of the parts of Moringa oleifera Lam.

Leaf f2 Leaf d2 LeAf d4 / Hoja d4 Leaf d1 Leaf d3 Seed husk1 Seed p1 Wings1 Stem4 Pod2
Moisture % 75.00 7.50 79.20 -- -- -- -- -- -- 86.90
Calories in 100 g 92.00 205.00 -- -- -- -- -- -- -- 26.00
Protein (g) 0.07 0.27 -- 0.26 0.44 0.10 0.37 0.07 0.06 0.03
Fat (g) 0.02 0.02 -- nd 0.01 0.02 0.42 nd nd 0.00
Carbohydrates (g) 0.13 0.38 -- -- -- -- -- -- -- 0.04
Fiber (g) 0.01 0.19 -- -- -- -- -- -- -- 0.05
Ash (mg∙g-1) -- -- -- 0.09 0.10 0.02 0.03 0.09 0.07 --
Minerals (g) 0.02 -- -- -- -- -- -- -- -- 0.02
Total phenols (mg∙g-1) -- -- -- -- 34.00 -- -- -- -- --
Tannins (mg∙g-1) -- -- -- -- 14.00 -- -- -- -- --
Saponinas (mg∙g-1) -- -- -- -- 50.00 -- -- -- -- --
Phytates (mg∙g-1) -- -- -- -- 31.00 -- -- -- -- --
Raw energy (MJ∙kg-1) -- -- -- 19.35 17.70 21.62 26.68 18.52 18.95 --
Carotene (vit. A) (mg) 0.07 0.19 1.93 -- -- -- -- -- -- --
β-carotene (mg) -- 0.93 -- -- -- -- -- -- --
Thiamine (B1) (mg) 0.00 0.00 -- -- -- -- -- -- -- --
Riboflavin (B2) (mg) 0.00 0.21 -- -- -- -- -- -- -- --
Niacin (B3) (mg) 0.01 0.08 -- -- -- -- -- -- -- --
Vitamin C (mg) 2.20 0.17 -- -- -- -- -- -- -- --
Ascorbic acid (mg) -- -- 6.60 -- -- -- -- -- -- --
nd = not detected; d = dehydrated; f = fresh; p = peeled; ext = extracted 1Abbas (2013); 2Dhakar et al. (2011); 3Makkar and Becker (1996); 4Nambiar and Seshadri (2001)

Table 2. Elements in different parts of Moringa oleifera Lam.

Element Leaf f4 Leaf d4 Leaf d6 Leaf d3 Leaf d5 Pod4 Pod p.j.2 Pod2 Flower2 Petioles f.p.2 Seed w/h2 Seed p2 Seed1 Stem2 Stem f.p.2 Root2
Calcium 4.400 20.03 22.40 - 0.019 0.300 0.100 0.180 0.170 0.270 0.720 0.120 0.143 0.340 0.180 0.300
Manganese 0.420 3.680 - - 0.062 0.240 - - - - 1.700 0.290 3.00x 10-3 - - -
Phosphorous 0.700 2.040 6.300 - 2.500 1.100 - - - - - - - - - -
Potassium 2.590 13.24 - - 17.70 0.240 2.740 4.450 3.510 2.510 1.710 1.100 2.550 4.420 1.970 2.050
Copper 0.007 0.006 - 0.032 0.009 0.031 - - - - - - 1.23 x 10-3 - - -
Iron 0.009 0.282 0.260 - 0.226 0.053 - - - - - - 1.11 x 10-2 - - -
Sulfur 1.370 8.700 - - - 1.370 - - - - - - - - - -
Selenium - - - - 0.027 - - - - - 0.000 - 4.97 x 10-4 - - -
Sodium - - - - 1.620 - 0.290 0.860 <0.1 <0.1 1.410 0.940 1.340 0.480 - < 0.1
Lithium - - - - - - - - - - - - 6.62x 10-6 - - -
Magnesium - - - - 4.340 - - - - - - - 1.500 - - -
Chrome - - - 0.578 <0.005 - - - - - - - 2.65 x 10-4 - - -
Nickel - - - - - - - - - - - - 0.25 x 10-4 - - -
Zinc 0.002 0.033 - 0.116 <0.005 - - - - - - - 1.10 x 10-2 - - -
Rubidium - - - 0.076 - - - - - - - - 5.43x10-4 - - -
Strontium - - - - - - - - - - - - 1.53x10-3 - - -
Lead - - - 0.004 - - - - - - - - 0.06x10-5 - - -
Thorium - - - 0.003 - - - - - - - - - - -
Barium - - - 0.890 - - - - - - - - 3.59x10-4 - - -
f=fresh;d = dehydrated; f.p. = flowering plant; i.p. = immature plant; w/h = with husk; p. = peeled Data are expressed in mg∙g-1. 1Al-anizi, Hellyer, and Zhang (2014); 2Amaglo et al. (2010); 3Asiedu-Gyekye et al. (2014); 4Dhakar et al. (2011); 5Freiberger et al. (1998); 6Nambiar and Seshadri (2001)

Table 3. Amino acid content in parts of Moringa oleifera Lam.

Amino acid Leaf d3 Leaf d2 Leaf f1 Leaf d1 Pod f1
Aspartic 10.6 12.8 -- -- --
Glutamic 11.69 20.9 -- -- --
Serine 4.78 7.19 -- -- --
Glycine 6.12 8.38 -- -- --
Histidine 3.12 3.78 1.498 6.13 1.1
Arginine 6.96 14.5 4.066 13.25 3.6
Threonine 5.05 7.09 1.177 11.88 3.9
Alanine 6.59 11 -- -- --
Proline 5.92 10.2 -- -- --
Tyrosine 4.34 8.33 -- -- --
Valine 6.34 10.8 3.745 10.63 5.4
Methionine 2.06 2.34 1.177 3.5 1.4
Isoleusine 5.18 7.82 2.996 8.25 4.4
Leusin 9.86 15.5 4.922 19.5 6.5
Phenylalanine 6.24 10.5 3.103 13.88 0.4
Lysine 6.61 9.17 3.424 13.25 1.5
Cysteine 1.19 3.87 -- -- --
Tryptophan 2.13 7.53 1.07 4.25 0.8
d = dehydrated; f = fresh Data are expressed in mg∙g-1. 1Dhakar et al. (2011); 2Freiberger et al. (1998); 3Makkar and Becker (1996);

Phytochemical

In various parts of the plant, secondary metabolites have been identified: tannins, saponins, polyphenols (flavonoids such as kaempferol, quercetin, myricetin, isorhamnetin, kaempferol glucosides, quercetin and rutinosides), malonilglucosides, phenolic glucosides (niazirin and niacin), cardiac glucosides, isocyanates, sterols and glucosterols, fatty acids and alkaloids (Alhakmani, Kumar, & Khan, 2013; Amaglo et al., 2010; Borges-Teixeira, Barbieri-Carvalho, Neves, Apareci-Silva, & Arantes-Pereira, 2014; Cheehpracha et al., 2010; Maguro & Lemmen, 2007). In addition, minor metabolites such as glucosinolates [4-(α-L-rhamnopyranosyloxy)-benzyliglucosinolate], isocyanates[pterigospermin,(4-(α-L-rhamnosyloxy)-benzyl isothiocyanate],1[4(4’-0-acetyl-α-L-rhamnosyloxy)-benzyl isothiocyanate], dipeptides (aurantiamide acetate) and urea derivatives (1,3-dibenzylurea) have been described (Föster et al., 2015; Howarth & Benin, 2011; Sashidhara et al., 2009; Waterman et al., 2014). In Table 5, substances contained in different parts of the plant are listed.

Table 4. Fatty acid contents in different parts of Moringa oleifera Lam.

Fatty acids Oil1 Root2 Root f.p.2 Stem2 Stem f.p.2 Petioles f.p.2 Leaf2 Leaf f.p.2 Flower2 Pod g2 Pod m2 Seed w/h2 Seed p2
Myristic acid C14:0 - 0.46 0.42 0.6 0.62 0.66 0.13 0.14 0.16 0.34 0.1 0.07 0.11
Palmitic acid C16:0 6.45 39.4 41.3 47.8 47.1 37.3 26 25.3 33.6 48 9.16 8.4 9.05
Palmitoleic acid C16:1 0.97 0.53 1.68 0.37 1.35 0.63 0.56 0.55 0.22 0.97 1.44 1.91 2.27
Heptadecanoic acid C17:0 - 1.3 1.2 0.96 1.45 1.46 0.46 0.25 0.41 0.97 0.1 0.09 0.09
Heptadecenoic acid C17:1 - 0.03 0.12 0 0 0 0 0 0.28 0 0.03 0.01 0.06
Stearic acid C18:0 5.5 7.38 6.03 11.5 9,21 4.79 4.33 3.02 5.54 13.4 5.32 9.92 4.26
Oleic acid C18:1 ± 0.5 30.6 37 16.4 18.6 17.3 14 6.81 29 34.6 78.9 74.5 80.6
Linolenic acid C18:2 1.27 10.8 9.58 16.5 15.9 21.4 15.9 11.4 18.6 0.02 1.16 0.69 0.66
Linolenic acid C18:3 0.3 2.26 1.42 4 3.9 16.2 37.3 50.8 10.6 0.02 0.5 0.23 0.16
Arachidic acid C20:0 4.08 5.02 0.92 1.87 1.67 0.11 0.11 1.27 1.23 1.54 3.02 3.86 2.58
Eicosenoic acid C20:1 1.68 2.21 0.3 0.04 0.05 0.05 0.05 0.11 0.33 0.03 0.17 0.33 0.17
Behenic acid C22:0 6.16 0.02 0.01 0.04 0.05 0.05 0.05 0.01 0.01 0.03 0.03 0.01 0
Lignoceric acid C24:0 0.02 0.02 0.1 0 0.05 0.03 0.03 0.01 0.01 0.03 0.03 0.01 0
f.p..= flowering plant; i.p. = immature plant; w/h = with husk; p. = peeled; g = green; m = mature. Data expressed in g∙100 g-1. 1Freiberger et al. (1998); 2Nambiar and Seshadri (2001).

Medicinal properties and ethnomedical uses

Different Ayurvedic medicine books include records on the use of M. oleifera since the eighteenth century (Kumar, Kumar, Kumar-Singh, 2015) for the treatment of asthma, epilepsy, eye and skin diseases, fever, headache, hemorrhoids, anti-helminths, kidney stones and arthritis, among other conditions (Kumar, 2013; Sanjay & Dwivedy, 2015; Singh, 2012a).

In Africa it has been used to treat arthritis, pain in joints, head, stomach, ears and molars, as a cardiac and circulatory stimulant, to treat physical weakness, colds, stomach worms, fever, kidney and liver problems, epilepsy, anemia, ulcers, delirium, snakebite, as a rubefacient, among others (Lim, 2012; Popoola & Obeme, 2013). In some Latin American countries, it is used to treat asthma, flu, cough, colic, flatulence, gastritis, headache, fever and itching (Torres, Méndez, Durán, Boulogne, & Germosén, 2015).

Table 5. Compounds isolated from different parts of M. oleifera and their biological activities.

Compound Biological activity Reference
4(βL-rhamnosyloxy)-benzyl isothiocyanate or Pterygospermin (Rb, S) Antibiotic and fungicide. Associated with inhibition of TNF-α and IL-2, reduces demyelination and axonal loss, useful for multiple sclerosis 3, 9
4-(4’-0-acetyl-β-L-rhamnosyloxy)- benzyl isothiocyanate (L) Associated with inhibition of TNF-α and IL-2 3
4-(β-D-glucopyranosyl -1→4-β- L- rhamnopyranosyloxy)-benzyl thiocarboxamide (S) Antibacterial 20
Feluric, gallic and ellagic acids (L) Antioxidant, antibacterial 30
Aurantiamide acetate, 1,3-dibenzylurea (R) Anti-inflammatory, anti-arthritic, analgesic 3, 24
Benzoic acid 4-0-β-rhamnosyl-(1-->2) β-glucoside (L) Help treat diabetes, typhoid, malaria, hypertension, stomach problems and amoebic dysentery, anti-inflammatory, analgesic 12
Chlorogenic and cryptochlorogenic acids (L) Anti-inflammatory, antioxidant, reduces lipids in plasma and liver and acute lung injury 24, 32
Unsaturated fatty acids (So) Nutritional and provides stability to oil 21
Alkaloids, flavonoids, diterpenes, tannins and glycosides (Ph) Anti-inflammatory activity 3
Essential amino acids (L, S) Aid in nutrient transport and storage 11, 14
α and β-amyrin (Sb, L) Antimicrobial, anti-inflammatory activity 33
β-carotene, Astragalin, Isoquercetin, tocopherols, vitamin C (L) Antioxidant 21, 32
Benzaldehyde 4-0-β-glucoside (L) Help treat diabetes, typhoid, malaria, hypertension, stomach problems and amoebic dysentery, anti-inflammatory, analgesic 8, 12
Benzyl isocyanate (Fp) Chemopreventive agent, reduces colitis 4
β-sitosterol (Sb, S, St, Fp) Hypotensive activity, decreases cortisol synthesis, immunosuppressant, antioxidant, antibronchoconstrictor, hepatoprotective, anti-inflammatory 1, 11, 9, 13, 28
Kaempferitrin (kaempferol-3,7- 0-β- dirhamnoside) (L) Hypoglycemic 18
Kaempferol (L, Fp) Antioxidant that protects against cancer, arthritis, obesity and inflammation 8
(-)-Catechin (S) Antioxidant, antibacterial 28
Kaempferol derivatives, Flavonol glycosides (L) Help treat diabetes, typhoid, malaria, hypertension, stomach problems and amoebic dysentery, anti-inflammatory, analgesic 12, 8
Sterols (So, S) Reduces cholesterol 2
Stigmasterol (Sb) Decreases serum cholesterol levels 5
Phenylmethanamine, 4β-D-glucopyranosyl -1-->4β-L- rhamnopyranosyloxy)- benzyl isocyanate (S) Antibacterial 20
Gibberellin (L) Stimulates plant growth 10
Lecithin (S) Blood thinner 7
Myricetin (L, R) Antioxidant, anticarcinogenic, antimutagenic, antidiabetic 29
Moringina (S) Cardiac stimulant, bronchodilator, muscle relaxants 27
Moringinina (L, Rb) Contributes to glucose homeostasis 19
N-a-L- rhamnophyranosyl vincosamide (L) Cardioprotective agent 22
Niazimicine, Niacimicin A and B (L, S) Inhibits TNF-α and IL-2, reduces blood pressure, chemopreventive, stimulates insulin release and antioxidant 1, 3, 6
Niaziminin, thiocarbamate (L) Associated with tumor reduction 1
Niaziridin (L, Fp) Facilitates the absorption of drugs (e.g. ampicillin), vitamins and nutrients through the gastrointestinal membrane 26
Niazirin (L, Fp, S) Antitumor and antibacterial activity 26, 6
Plasmin, Thrombin (L, R) Antimutagenic, blood anticoagulant 25
Water-soluble polysaccharides (Fp) Immunomodulator 16
Quercetin-3-glycoside (L) Hypoglycemic 15
Quercetin and some of its glucosides (L, Fp, S) Antioxidant, hepatoprotective, analgesic, vasodilatory, antiplatelet, anti-arthritic, antibacterial, anti-inflammatory, antiflu 1, 19, 20, 22
Rutin (L) Anti-inflammatory, antispasmodic, prevents cancer and hepatoprotective 22
Tocopherols: a-tocopherol,d-tocopherol, g-tocopherol (L, S, So) Antioxidant 32
Vanillin (L, S, Fp) Antioxidant 24
Vicenin-2 (L) Promotes epithelization in open wounds 17, 31
Violaxanthin (L) Useful in treating eye diseases 21
Vitamin A and β-carotenes (L, S, Fp) Protect eyes, skin, and heart, is antidiarrheal, and reduces the risk of scurvy 14, 23
Vitamin C (L) Protects against respiratory diseases 14
Zeaxanthin (L, S, Fp) Protects against UV rays and strengthens vision 21

Pharmacological studies

Several biological studies (Table 6) conducted with M. oleifera have highlighted the antioxidant activity in vitro of the leaf, root, seed, flower and stem bark, attributable to the presence of polyphenols, alkaloids, saponins, carotenes, minerals, amino acids and sterols (Luqman, Srivastava, Kumar, Maurya, & Chanda, 2012; Kumbhare, Guleha, & Sivakumar, 2012; Moyo, Oyedemi, Masika, & Muchenje, 2012). Their antioxidant activity has been determined by various colorimetric methods such as DPPH (2,2-diphenyl-1-picrylhydrazy), ABTS [2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid], LPO (lipid peroxidation) , FRAP (ferric reducing antioxidant power), among others.

Table 6. Medicinal properties of Moringa oleifera Lam.

Ailment Part of the plant used Ailment Part of the plant used
Abortifacient B F G L R Bronchitis L
Aphrodisiac F Carminative R
Enlarged spleen B F Night and childhood blindness L P
Analgesic B G L R Heal wounds L
Anemia L S Diarrhea L
Antimicrobial B F L R S Dysentery G
Anti-asthmatic G S Decreases cholesterol levels F L
Anticancer L S Diuretic B F G L R S
Anticlastogen P Scurvy L
Antidiabetic L Cardiac-circulatory stimulant F G L R S P
Antispasmodic B F L R S Stimulant in paralysis R
Antifertility B R Hemorrhoids L
Anti-inflammatory B F L R S P Hepatoprotective agent F L R
Antilithic R Hypotensive L
Antihypertensive L Eye and ear Infections L
Anthelmintic F Immunomodulator (cellular, humoral)
Antimalarial (larvicide) S Laxative L
Antioxidant B L R S Purgative L
Antipyretic L S Radioprotector L
Antitumor agent B L S Rheumatism G R
Anti-ulcerogenic agent B F L R Regulates hyperthyroidism L
Anti-urolithiasic agent R Rubefacient B G R
Vesicant B R
B = bark; F = flower; G = gum; H = leaf; R = root; S = seed; P = pod Aney et al. (2009); Dubey et al. (2013); Fahey (2005); Lim (2012); Panchal, Murti, Lambole, and Gajera (2010); Popoola and Obeme (2013)

Fresh crushed leaves of M. oleifera showed better antioxidant activity than other species. Pakade, Cukrowskai, and Chimuka (2013) report that the total phenolics content (TPC) and the total flavonoids content (TFC) was higher (24.4 ± 8.7 and 58.7 ± 3.0 g∙kg-1 dry weight), compared with other vegetables such as cauliflower (14.7 ± 3.9 and 4.6 ± 4.4 g∙kg-1 dry weight), spinach (14.4 ± 2.6 and 12.5 ± 3.1 g∙kg-1 dry weight), cabbage (11.8 ± 6 and 9.8 ± 6.1 g∙kg-1 dry weight), broccoli (17.6 ± 2.9 and 15.7 ± 2.2 g∙kg-1 dry weight) or peas (10.4 ± 7.9 and 6.4 ± 5.8 g∙kg-1 dry weight).

Studies with extracts of flower (Alhakmani et al., 2013), leaf (Kumbhare & Sivakumar, 2011; Mcknight et al., 2014; Singh et al., 2012b; Sulaiman et al., 2008), pod (Cheehpracha et al., 2010), root (Georgewill, Georgewill, & Nwankoala, 2010) and seed (Correa-Araújo et al., 2013; Mahajan, Mali, & Mehta, 2007; Mahajan & Mehta, 2010; Mahajan & Mehta, 2011) show anti-inflammatory activity in models in vivo and in vitro.

Leaf extracts show activity against Gram-negative bacteria (Escherichia coli and Salmonella typhi) at 400 mg∙mL-1 (Urmi, Masum, Zulfiker, Hossain, & Hamid, 2012), and against Gram-positive bacteria and fungi where the minimum inhibitory concentration was 200 mg∙mL-1 (Adline & Devi, 2014; Gami & Parabia, 2011; Gomashe, Gulhane, Junghare, & Dhakate 2014; Ojiako, 2014), as well as antiviral activity against the viruses of foot and mouth disease, Herpes equino, Herpes simplex, Epstein bar, Hepatitis, Rhinovirus and HIV (Younus et al., 2015). It also inhibits the growth of larvae of Anopheles gambiaes (Chuang et al., 2007; Prabhu, Murugan, Nareshkumar, Ramasubramanian, & Bragadeeswaran, 2011) and Aedes aegypti (vector for the dengue virus), attributed to its content of β-amyrin, β-sitosterol, kaempferol and quercetin (Pontual et al., 2012).

The flower extracts showed anti-bacterial activity against B. subtilis, S. aureus, E. coli, K. pneumoniae and anti-fungal against C. albicans (Talreja, 2010), and the seed extracts against K. pneumonia, P. vulgaris, E. coli, P. fluorescens, A. baumannil, B. cepacia, P. mirabilis, S. rubidae, S. pullorum, and K. oxycota (Oluduro et al., 2010). The stembark showed activity against E. coli, S. aureus, P. aeruginosa and S. epidermis (Kumbhare et al., 2012), and the oil against T. rubrum, T. mentagrophytes, E. floccosum and M. canu. The pod husk extract showed activity against S. aureus, S. epidermis, S. thyphimurium and E. coli (Arora et al., 2014). In the root the presence of pterygospermin, an isocyanate with antibacterial use, was identified (Howarth & Benin, 2011).

Uses of Moringa oleifera Lam.

Agroindustrial

The ethanolic and aqueous extract of M. oleifera leaf is used as a biofomenter because it contributes to increased nodules and weight in roots because of its content of plant hormones such as gibberellin and zeatin; it also reduces the stress generated by excess NaCl and Cd(2), increases productivity due to the antioxidant activity that occurs in some crops (Howladar, 2014; Rady, Varma, & Howladar, 2013) and is used as a fungicide on tomato crops (Yousaf et al., 2015); in addition, activated carbon is obtained from the embryo, seed husks and stemwood (Kalavathy & Miranda, 2010).

The oil extracted from the seed, with yields of up to 39 %, is used to make cosmetics (as a skin moisturizer, conditioner and emollient) and as an ingredient in soaps, salves, creams and sunscreen (Aney et al., 2009; Ayerza, 2012; Cefali, Ataide, Moriel, Foglio, & Mazzola, 2016). The oil and mature leaves are used as a preservative (Bijina et al., 2011) and as a food fortificant (Oyeyinka & Oyeyinka, 2016), due to the high concentration of antioxidants (which are trypsin and protease inhibitors). The flowers have caseinolytic activity due to the presence of aspartic, cysteine, serine and protease-dependent calcium ions, creating a potential application in the dairy industry (Pontual et al., 2012).

Fodder

The leaves and stems have fodder potential, appreciated in dry seasons because they grow quickly and require little water (Nouman et al., 2014; Soliva et al., 2005); both contain 23 and 9 % protein and have 79 and 57 % digestibility, respectively (Liñan, 2010). By supplying it to ruminants, as part of their diet, increased milk production and weight was observed (Mahmood et al., 2010; Mendieta, Spörndly, Reyes, & Spörndly, 2011). In poultry it improved growth, food digestion, intestinal health, skin color (Donkor, Kwame-Glover, Addae, & Kubi, 2013; Melesse, Getye, Berihum, & Banerjee, 2013; Nkukwana et al., 2014a; Nkukwana et al., 2014b) and egg production (Kana et al., 2015). The use of moringa leaves in rabbit diets resulted in weight gain (Abbas, 2013; Caro, Bustamante, Dihigo, & Ly, 2013), and in growing pigs it improved digestibility from 55.7 to 65.8 %, by being a source of protein (García & Macias, 2014; Muthukumar, Naveena, Vaithiyanathan, Sen, & Sureshkumar, 2014; Ly, Samkol, Phiny, Bustamante, & Caro, 2016). In the diet of Nile tilapia fingerlings, it is recommended to replace soybean meal with moringa leaf by up to 7 % (Tiamiyu, Okomoda, & Aonde, 2016).

Moreover, the leaves as fodder can serve as a substitute for antibiotics because of their antimicrobial activity (Melesse et al., 2012). Likewise, the leaf, pod and root are used to treat livestock with diarrhea, dysentery, rheumatism and ulcers (Parthiban, Vijayakumar, Prabhu, & Yabesh, 2016; Verma, 2014).

Biofuels

Moringa seed oil has been considered as a potential source of biodiesel for use in motor vehicles, due to its low temperature, lubricity and high viscosity index, all without the need to modify it, thereby producing clean emissions within the ASTM D6751 and EN 14214 standards (Mofijur et al., 2014; Rahman et al., 2014; Sharma et al., 2009). Oil production could generate between 1,000 and 2,000 L∙ha-1, with a cetane number of nearly 67, high oxidation stability and a high freezing point (Karmakar, Karmakar, & Mukherjee, 2010), especially if the Periyakalum-1 variety, designed to increase pod and seed production, is used (Ayerza, 2012). It is also used as the basis for ethanol production (Hernández et al., 2013).

Water treatment

Seed powder, with and without the husk, has coagulant, flocculant, water softening and disinfectant effects (Bichi, 2013; Jeon et al., 2009; Suhartini, Hidayat, & Rosaliana, 2013). It can be used in the treatment of river water with suspended solids, and groundwater contaminated by various sources: synthetic effluents (Aziz et al., 2015; Lijesh & Malhotra, 2016; Sasikala & Muthurama, 2015), tannery effluents, palm oil mill effluents and waste from the concrete industry, (de Paula, de Oliveira-Ilha, & Santos-Andrade, 2016), paper industry (Area, Ojeda, Barboza, Bengoechea, & Felissia, 2010) and textile industry (Beltrán-Heredia, Sánchez-Martín, Muñoz-Serrano, & Peres, 2012b). It is also used to remove color, turbidity, fecal colloids, helminths and bacteria such as Echerichia coli. However, the use of moringa seed is less efficient than some commercial coagulants such as aluminum sulfate and ferric sulfate, but its low cost and biodegradability makes it a potential candidate in developing countries (Anwar, Latif, Ashraf, & Gilanni, 2007; Goja & Osman, 2013; Muthuraman & Sasikala, 2014; Pritchard, Craven, Mkandawire, Edmosnon, & O’neil 2010; Suhartini et al., 2013 ).

Efficacy as a coagulant is better the higher the turbidity level (Sánchez-Martín, Ghebremichael, & Beltrán-Heredia, 2010) in an alkaline medium and at high temperatures (Pritchard et al., 2010). It removes calcium, magnesium, iron, manganese, strontium, aluminum (Bichi, 2013), cadmium (Abedini & Alpour, 2015), nitrates (Rezende et al., 2016), textile dyes (Beltrán-Heredia et al., 2012b), nitrobenzene (Tavengwa, Cukrowska, & Chimuka, 2016) and anionic surfactants such as detergents (Beltrán-Heredia, Sánchez-Martín, & Barrado-Moreno, 2012a). Other parts of the plant have also been shown to facilitate cleaning water, such as the bark, which has been used to remove Ni, Pb, Na, K, Ca and Mg (Reddy, Seshaiah, Reddy, Rao, & Wang, 2010b; Reddy, Ramana, Seshaiah, & Reddy, 2011); the leaf has been used to remove lead (Reddy, Harinath, Seshaiah, & Reddy, 2010a) and mixed with activated carbon it has been used to remove Cu, Ni and Zn (Kalavathy & Miranda, 2010).

Conclusions

So far, studies indicate that Moringa oleifera has various bioactive chemical compounds, is useful for human and animal consumption, for the treatment of some diseases and as raw material in the cosmetics industry. This plant represents an environmentally-friendly alternative for the sustainable development of the food, health and technology industries. However, the existing information is insufficient to generate technology and apply it; therefore, further research is needed on the production system, processes and products for use in agro-industry and by the consumer.

References

Abbas, T. E. (2013). The use of Moringa oleifera in poultry diets. Turkish Journal of veterinary and Animal Sciences, 37, 492- 496. doi: 10.3906/vet-1211-40

Abdull, R. M., Ibrahim, M. D., & Kntayya, S. B. (2014). Health benefits of Moringa oleifera. Asian Pacific Journal of Cancer Prevention, 15, 8571-8576. doi: 10.7314/APJCP.2014.15.20.8571

Abedini, S., & Alpour, V. (2015). Cadmium removal from synthetic wastewater by using Moringa oleifera seed powder. Environmental Health Engineering Management Journal, 2(4), 157-163. Retrieved from http://www.ehemj.com/browse.php?a_id=114&slc_lang=en&sid=1&ftxt=1

Adline, J., & Devi, A. (2014). A study on phytochemical screening and antibacterial activity of Moringa oleifera. International Journal of Research in Applied, Natural and Social Sciences, 2(5), 169-176.

Al-anizi, A. A., Hellyer, M. T., & Zhang, D. (2014). Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter. Water Research, 56, 77-87. doi: 10.1016/j.watres.2014.02.045

Alhakmani, F., Kumar, S., & Khan, S. A. (2013). Estimation of total phenolic content, in-vitro antioxidant and antiinflammatory activity of flowers of Moringa oleifera. Asian Pacific Journal of Tropical Biomedicine, 3(8), 623-627. doi: 10.1016/S2221-1691(13)60126-4

Amaglo, N., Bennett, R. N., Lo Curto, R., Rosa, E., Lo Turco, V., Giuffrida, A., Lo Curto, A., Crea, F., & Timpo, G. M. (2010). Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chemistry, 122(4), 1047-1054. doi: 10.1016/j.foodchem.2010.03.073

Aney, J. S, Rashmi, T., Maushumi, K., & Kiran, B. (2009). Pharmacological and pharmaceutical potential of Moringa oleifera: A review. Journal of Pharmacy Research, 2(9), 1424-1426. Retrieved from http://jprsolutions.info/newfiles/journal-file-56b3fecbe505c6.43079591.pdf

Anwar, F., Latif, S., Ashraf, M., & Gilanni, A. H. (2007). Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy Research, 21(1), 17-25. doi: 10.1002/ptr.2023

Anwar, F., & Rashid, U. (2007). Physico-chemical characteristics of Moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pakistan Journal of. Botany, 39(5), 1443-1453.

Area, M. C., Ojeda, S. A., Barboza, O. M., Bengoechea, D. I., & Felissia, F. E. (2010). Tratamientos aplicables para la reducción de la DQO recalcitrante de efluentes de pulpados quimimecánicos y semiquímicos (revisión). Revista de Ciencia y Tecnología, 12(13), 4-12.

Arora, R., Malhotra, P., Sharma, A., Haniadka, R., Yashawanth, H. S., & Baliga, M. S. (2014) Medicinal efficacy of indian herbal remedies for the treatment of arthritis. In Ross, R., Watson, V., & Preedy, R. (Eds.), Bioactive Food as Dietary Interventions for Arthritis and Related Inf lammatory Diseases (pp. 601-617). USA: Academic Press. doi: 10.1016/B978-0-12-397156-2.00250-7

Asare, G. A., Gyan, B., Bugyei, K., Adjei, S., Mahama, R., Addob, P., Otu-Nyarko, L., Wiredu, E. K., & Nyarkob, A. (2012). Toxicity potentials of the nutraceutical Moringa oleifera at supra-supplementation levels. Journal of Ethnopharmacology, 139(1), 265-272. doi: 10.1016/j.jep.2011.11.009

Ashworth, A., & Ferguson, E. (2008). Dietary counselling in the management of moderately malnourished children. WHO Technical.Retrieved from http://www.who.int/nutrition/publications/moderate_malnutrition/MM_Background_paper3.pdf

Asiedu-Gyekye, I. J., Frimpong-Manso, S., Awortwe, C., Antwi, D. A., & Nyarko, A. K. (2014) Micro and macroelemental composition and safety evaluation of the nutraceutical Moringa oleifera leaves. Journal of Toxicology, 1-13. doi: 10.1155/2014/786979

Ayerza, R. (2012). Seed and oil yields of Moringa oleifera variety Periyakalum-1 introduced for oil production in four ecosystems of South America. Industrial Crops and Products, 36(1), 70-73. doi: 10.1016/j.indcrop.2011.08.008

Aziz, N., Jayasuriya, N., & Fan, L. (2015). Application of ‘Moringa oleifera’ seeds and ‘Musa cavendish’ as coagulants for lead, nickel and cadmium removal from drinking water. In: Asia Pacific Confederation of Chemical Engineering Congress 2015: APCChE 2015, incorporating CHEMECA 2015. Melbourne: Engineers Australia, 1774-1781. Retrieved from https://researchbank.rmit. edu.au/view/rmit:35734

Beltrán-Heredia, J., Sánchez-Martín, J., & Barrado-Moreno, M. (2012a). Long-chain anionic surfractants in aqueous solution. Removal by Moringa oleifera coagulant. Chemical Engineering Journal, 180(15), 128-136. doi: 10.1016/j.cej.2011.11.024

Beltrán-Heredia, J., Sánchez-Martín, J., Muñoz-Serrano, A., & Peres, J. A. (2012b). Towards overcoming TOC increase in waswater treated with Moringa oleifera seed extract. Chemical Engineering Journal, 188, 40-46. doi: 10.1016/j.cej.2012.02.003

Bichi, M. H. (2013). A review of the applications of Moringa oleifera seeds extracts in water treatment. Civil and Enviromental Research, 3(8), 1-11. Retrieved from http://www.iiste.org/Journals/index.php/CER/article/view/6576/6722

Bijina, B., Chellappan, S., Krishna, J. G., Basheer, S. M., Elyas, K. K., BahkalI, A. H., & Chandrasekaran, M. (2011). Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative. Saudi Journal of Biological Sciences, 18(3), 273-281. doi: 10.1016/j.sjbs.2011.04.002

Borges-Teixeira, E. M., Barbieri-Carvalho, M. R., Neves, V. A., Apareci-Silva, M., & Arantes-Pereira, L. (2014). Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves. Food Chemistry, 147, 51-54. doi: 10.1016/j.foodchem.2013.09.135

Budda, S., Butryee, C., Tuntipopipat, S., Rungsipipat, A., Wangnaithum, S., Lee, J. S., & Kupradinum, P. (2011). Suppresive effects of Moringa oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. Asian Pacific Journal of Cancer Prevention, 12(12), 3221-3228. Retrieved from http://www.apocpcontrol.org/paper_file/issue_abs/Volume12_No12/3221-28%20c11.8%20Budda.pdf

Caro, Y., Bustamante, D., Dihigo, L. E., & Ly, J. (2013). Harina de forraje de moringa (Moringa oleifera) como ingrediente en dietas para conejos de engorde. Revista Computadorizada de Producción Porcina, 20(4), 218-222. Retrieved from http://www.iip.co.cu/RCPP/204/204_08YCaro.pdf

Cefali, L. C., Ataide, J. A., Moriel, P., Foglio, M. A., & Mazzola, P. G. (2016). Plant-based active photoprotectants for sunscreens, Review. International Journal of Cosmetic Science, 38, 346-353. doi: 10.1111/ics.12316

Chandrashekar, K. S., Thakur, A., & Prasanna, K. S. (2010). Phytochemical and pharmacological investigation of Moringa oleifera. European Journal of Pharmacology, 668(1), 37. doi: 10.1016/j.ejphar.2011.09.280

Cheehpracha, S., Park, E. J., Yoshida, W. Y., Barit, C., Wall, M., Pezzuto, J. M., & Chang, L. C. (2010). Potential anti-inflammatory phenolic glycosides from medicinal plant Moringa oleifera fruits. Bioorganic & Medicinal Chemistry, 18(17), 6598-6602. doi: 10.1016/j.bmc.2010.03.057

Chuang, P. H., Lee, C. W., Chou, J. Y., Murugan, M., Shieh, B. J., & Chen, H. M. (2007). Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresource Technology, 98, 232-236. doi: 10.1016/j.biortech.2005.11.003

Correa-Araújo, L. C., Santos-Aguiar, J., Napoleão, T. H., Barreto-Mota, F. V., Souza-Barros, A. L., Moura, M. C., Cavalcanti-Coriolano, M., Barroso-Coelho, L. C. B., Gonçalves-Silva, T., & Guedes-Paiva, P. M. (2013).Evaluation of cytotoxic and anti-inflammatory activities of extracts and lectins from Moringa oleifera seeds. Plos One, 8(12), 1-15. doi: 10.1371/journal.pone.0081973

de Andrade-Luz, L., Cabral-Silva, M. C., da Silva-Ferreira, R., Aparecida-Santana, L., Silva-Lucca, R. A., Mentele, R., Vilela-Oliva, M. L., Guedes-Paiva, P. M., & Barroso- Coelho, L. C. B. (2013). Structural characterization of coagulant Moringa oleifera lecticin and its effect on hemostatic parameters. International Journal of Biological Macromolecules, 58, 31-36. doi: 10.1016/j.ijbiomac.2013.03.044

de Paula, H. M., de Oliveira-Ilha, M. S., & Santos-Andrade, L. (2016). Chemical coagulants and Moringa oleifera seed extract for treating concrete wastewater. Acta Scientiarum Technology, 38(1), 57-64. doi: 10.4025/actascitechnol.v38i1.25699

de Melo, G. O., Malvar, D. C., Vanderlinde, F. A., Rocha, F. F., Andrade-Pires, P., Costa, E. A., de Matos, L. G., Kaiser, C. R., & Costa, S. S. (2009). Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum. Journal of Ethnopharmacology, 124(2), 228-232. doi: 10.1016/j.jep.2009.04.024

Dhakar, R. C., Maurya, S. D., Pooniya, B. K., Bairwa, N., Gupta, M., & Sanwarmal (2011). Moringa: The herbal gold to combat malnutrition. Chronicles of Young Scientists, 2(3), 119-125. Retrieved from http://www.cysonline.org/article.asp?issn=2229-5186;year=2011;volume=2;issue=3;spage=119;epage=125;aulast=Dhakar

Donkor, A. M., Kwame-Glover, R. L., Addae, D., & Kubi, K. A. (2013). Estimating the nutritional value of the leaves of Moringa oleifera on poultry. Food and Nutrition Sciences, 4(11), 1077-1083. doi: 10.4236/fns.2013.411140

Dubey, K. D., Dora, J., Kumar, A., & Gulsan, R. K. (2013). A multipurpose Tree- Moringa oleifera. International Journal of Pharmaceutical and Chemical sciences, 2(1), 415-423.

Fahey, W. (2005). Moringa oleifera. A review of the medical evidence for its nutritional, therapeutic and prophylactic properties Part I. Trees for life Journal.

Falasca, S., & Bernabé, M. A. (2008). Potenciales usos y delimitación del área de cultivo de Moringa oleifera en Argentina. Revista Virtual REDESMA, 3, 1-16.

Freiberger, C. E., Vanderjagt, D. J., Pastuszyn, A., Glew, R. S., Mounkaila, G., Millson, M., & Glew, R. H. (1998). Nutrient content of the edible leaves of seven wild plants from Niger. Plant Foods for Human Nutrition, 53, 57-69.

Föster, N., Ulrich, C., Schreiner, M., Müller, C. T., & Mewis, I. (2015). Development of a reliable extraction and quantification method of glucosinolates in Moringa oleifera. Food Chemistry, 166, 456-464.

Galuppo, M., Giacoppo, S., Denicola, G. R., Iori, R., Navarra, M., Lombardo, G. E., Bramanti, P., & Mazzon, E. (2014). Antiinflammatory activity of glucomoringin isothicyanate in mouse model of experimental autoimmune encephalomyelitis. Fitoterapia, 95, 160- 174. doi: 10.1016/j.fitote.2014.03.018

Gami, B., & Parabia, F. (2011). Screening of methanol & acetone extract for antimicrobial activity of some medicinal plants species of Indian folklore. International Journal Research in Pharmaceutical Sciences, 2(1), 69-75.

García, J., & Macias, M. (2014). Digestibilidad fecal y balance de nitrógeno en cerdos alimentados con diferentes niveles de harina de Moringa oleifera incluida en la dieta. Livestock Research for Rural Development, 26(12), Retrieved from http://www.lrrd.org/lrrd26/12/garc26215.html

Georgewill, O. A., Georgewill, U. O., & Nwankoala, R. N. P. (2010). Anti-inflamatory effects of Moringa oleifera Lam. extract in rats. Asian Pacific Journal of Tropical Medicine, 3(2), 133-135. doi: 10.1016/S1995-7645(10)60052-1

Goja, A. M., & Osman, M. S. (2013). Preliminary Study on Efficacy of Leaves, Seeds and Bark Extracts of Moringa oleifera in Reducing Bacterial load in Water. International Journal of Advanced Research, 1(4), 124-130.

Gomashe, A. V., Gulhane, P. A., Junghare, M. P., & Dhakate, N. A. (2014). Antimicrobial activity of Indian medicinal plants: Moringa oleifera and Saraca indica. International Journal of Current Microbiology and Applied Science, 3(6), 161-169.

Hernández, E., García, A., López, M., Puls, J., Parajó, J. C., & Martín, C. (2013). Diluted sulphuric acid pretreatment and enzymatic hydrolysis of Moringa oleifera empty pods. Industrial Crops and Products, 44, 227-231. doi: 10.1016/j.indcrop.2012.11.001

Howarth, M., & Benin, V. (2011). Theoretical investigation of a reported antibiotic from the “Miracle Tree” Moringa oleifera. Computational and Theoretical Chemistry, 965, 196-201. doi: 10.1016/j.comptc.2011.01.045

Howladar, S. M. (2014). A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicology and Environmental Safety, 100, 69-75. doi: 10.1016/j.ecoenv.2013.11.022

Ijarotimi, O. S., Adeoti, O. A., & Ariyo, O. (2013). Comparative study on nutrient composition, phytochemical, and functional characteristics of raw, germinated, and fermented Moringa oleifera seed flour. Food Science & Nutrition, 1(6), 452-463. doi: 10.1002/fsn3.70

Iqbal, S., & Bhager, M. I. (2006). Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. Journal of Food Composition and Analysis, 19, 544-551. doi: 10.1016/j.jfca.2005.05.001

Jeon, J. R., Kim, E. J., Kim, Y. M., Murugesam, K., Kim, J. H., & Chang, Y. S. (2009). Use of grape seed and its natural pholiphenol extracts as a natural organic coagulant for removal of cationic dyes. Chemosphere, 77, 1090- 1098. doi: 10.1016/j.chemosphere.2009.08.036

Kalavathy, M. H., & Miranda, L. R. (2010). Moringa oleifera - A solid phase extractant for the removal of copper, nickel and zinc from aqueous solutions. Chemical Engineering Journal, 158, 188-199. doi: 10.1016/j.cej.2009.12.039

Kana, J. R., Keambou, T. C., Raquel, S. J., Frederico, L., Mfopou, F. S., Mube, K. H., & Teguia, A. (2015). Effects of substituting soybean with Moringa oleifera meal in diets on laying and eggs quality characteristics of kabir chickens. Journal of Animal Nutrition, 1(14), 1-6. Retrieved from http://animalnutrition.imedpub.com/archive.php

Karmakar, A., Karmakar, S., & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresourse Technology, 101, 7201-7210. doi: 10.1016/j.biortech.2010.04.079

Kumar, V. (2013). Moringa oleifera or Sahijan -A Miracle plant of medicinal Value. In Tripathi, C. (Ed.), Chemistry, Biochemistry and Ayurveda of Indian Medicinal Plants (pp.140-144). India: International E-Publication.

Kumar, B., Kumar, S., & Kumar-Singh, A. (2015). Ayurvedic Medicine: A review on medicinal importance of shigru (Moringa oleifera Lam.) in Samhitas. Indian Journal of Agriculture and allied Science, 1(3), 127-137.

Kumbhare, M. R., Guleha, V., & Sivakumar, T. (2012). Estimation of total phenolic content, cytotoxicity and in-vitro antioxidant activity of stem bark of Moringa oleifera. Asian Pacific Journal of Tropical Disease, 2(2), 144- 150. doi: 10.1016/S2222-1808(12)60033-4

Kumbhare, M. R., & Sivakumar, T. (2011). Anti-inflammatory and analgesic activity of stem bark of Moringa oleifera. Pharmacologyonline, 3, 641-650.

Lijesh, K. P., & Malhotra, R. (2016). Reduction of turbidity of water using Moringa oleifera. International Journal of Applied Engineering Research, 11(2), 1414-1423.

Lim, T. M. (2012). Moringa. In:Edible medicinal plants and non-medicinal plants 3 (fruits) (pp. 453-485). doi: 10.1007/978-94-007-2534-8

Liñan, T. F. (2010). Moringa oleifera El árbol de la nutrición. Ciencia y salud vitual, 2(1), 130-138. Retrieved from http://www.curn.edu.co/journals/index.php/cienciaysalud/article/view/70

Luqman, S., Srivastava, S., Kumar, R., Maurya, A. K., & Chanda, D. (2012). Experimental assessment of Moringa oleifera leaf and fruit for its antistress, antioxidant, and scavenging potential using in vitro and in vivo assays. Evidence-Based Complementary and Alternative Medicine, 1-13. doi: 10.1155/2012/519084

Ly, J., Samkol, P., Phiny, C., Bustamante, D., & Caro, Y. (2016). Balance de nitrógeno (n) en cerdos alimentados con harina de follaje de Moringa oleifera. Revista de BioCiencias, 3(4), 349-358. Retrieved from http://biociencias.uan.edu.mx/publ icaciones/06-04/biociencias06-04-09.pdf

Maguro, L. O., & Lemmen, P.(2007). Phenolics of Moringa oleifera leaves. Natural Products Research, 21(1), 58-68.

Mahajan, S. G., Mali, R. G., & Mehta, A. A. (2007). Effect of Moringa oleifera Lam. seed extract on toluene diisocyanate-induced immune-mediated inflammatory Responses in Rats. Journal of Immunotoxicology, 4, 85-96. doi: 10.1080/15476910701337472

Mahajan, S. G., & Mehta, A. A. (2010). Immunosupresive activity of ethanolic extracts of seeds of Moringa oleifera Lam. in experimental immune inflammation. Journal of Ethnopharmacology, 130, 183-186. doi: 10.1016/j.jep.2010.04.024

Mahajan, S. G., & Mehta, A. A. (2011). Suppresion of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a guinea pig model of asthma. European Journal of Pharmacology, 650, 458-464. doi: 10.1016/j.ejphar.2010.09.075

Mahmood, K. T., Mugal, T., & Haq, I. U. (2010). Moringa oleifera: a natural gift-A review. Journal of Pharmaceutical Sciences & Research, 2(11), 775-781.

Makkar, H. P. S., & Becker, K. (1996). Nutrional value and whole and ethanol antinutritional components of extracted Moringa oleifera leaves. Animal Feed Science Technology, 63, 211-228.doi: 10.1016/S0377-8401(96)01023-1

McKnight, M., Allen, J., Waterman, J. T., Hurley, S., Idassi, J., & Minor, R. C. (2014). Moringa tea blocks acute lung inflammation induced by swine confinement dust through a mechanism involving TNF-α expression, C-Jun N-Terminal kinase activation and neutrophil regulation. American Journal of Immunology, 10(2), 73-87. doi: 10.3844/ajisp.2014.73.87

Melesse, A., Getye, Y., Berihum, K., & Banerjee, S. (2013). Effect of feeding graded levels of moringa stenopetala leaf meal on groth performance, carcass traits and some serum biochemical parameters of Koekoek chickens. Livestock Science, 157, 498-505. doi: 10.1016/j.livsci.2013.08.012

Melesse, A., Steingass, H., Boguhn, J., Schollenberger, M., & Rodehutscord, M. (2012). Effects of elevation and season on nutrient composition of leaves and green pods of Moringa stenopetala and Moringa oleifera. Agroforest Systems, 86, 505-518. doi: 10.1007/s10457-012-9514-8

Mendieta, A. B., Spörndly, R., Reyes, S. N., & Spörndly, E. (2011). Moringa (Moringa oleifera) leaf meal as a source of protein in locally produces concentrates for dairy cow fed low protein diets in tropical areas. Livestock Science, 137, 10-17. doi: 10.1016/j.livsci.2010.09.021

Mendieta, A. B., Spörndly, E., Reyes, S. N., Salmerón, M. F., & Halling, M. (2012). Biomass production and chemical composition of Moringa oleifera under different planting densities and levels of nitrogen fertilization. Agroforest Systems, 87, 81-92. doi: 10.1007/s10457-012-9525-5

Middha, S. K., Usha, T., Tripathi, P., Marathe, K. Y., Jain, T., Bhatt, B., Masurkar, Y. P., & Pande, V. (2012). An In vitro studies on indigenous ayurvedic plants, having hypoglycemic activity. Asian Pacific Journal of Tropical Disease, 2(1), S46-S49.

Mishra, G., Singh, P., Verma, S., Kumar, S., Srivastav, S., Jha, K., & Khosa, R. L. (2011). Traditional uses, phytochemistry and pharmacological properties of Moringa oleifera plant: An overview. Der Pharmacia Lettre, 3(2), 141-164.

Mofijur, M., Masjuki, H. H., Kalam, M. A., Atabani, A. E., Fattah, I. M. R., & Mobarak, H. M. (2014). Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diésel engine. Industrial Crops and Products, 53, 78-84. doi: 10.1016/j.indcrop.2013.12.011

Moyo, B., Oyedemi, S., Masika, P. J., & Muchenje, V. (2012). Poliphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activitiy of liver from goats suplemented with Moringa oleifera leaves/sunflower seed cake. Meat Science, 91, 441-447. doi: 10.1016/j.meatsci.2012.02.029

Muhammad, A. A., Pauzi, N. A. S., Arlselvan, P., Abas, F., & Fakurazi, S. (2013). In vitro wound healing potential and identification of bioactive compounds from Moringa oleifera Lam. BioMed. Research International, 10p. doi: 10.1155/2013/974580

Muthukumar, N., Naveena, B. M., Vaithiyanathan, S., Sen, A. R., & Sureshkumar, K. (2014). Effect of incorporation of Moringa oleifera leaves extract on quality of ground pork patties. Journal of Food Science & Technology, 51(11), 3172-3180. doi: 10.1007/s13197-012-0831-8

Muthuraman, G., & Sasikala, S. (2014). Removal of turbidity from drinking water using natural coagulants. Journal of Industrial and Engineering Chemistry, 20, 1727-1731. doi: 10.1016/j.jiec.2013.08.023

Nambiar, B., & Seshadri, S. (2001). Bioavailability trials of b-carotene from fresh and dehydrated drumstrick leaves (Moringa oleifera) in a rat model. Plant Foods for Human Nutrition, 56, 83-95. Retrieved from http://link.springer.com/article/10.1023%2FA%3A1008132503972

Ndong, M., Uehara, M., Katsumata, S. I., & Suzuki, K. (2007). Effects of oral administration of Moringa oleifera Lam. on glucose tolerance in Goto-Kakizaki and wistar rats. Journal of Clinical Biochemistry and Nutrition, 40(3), 229-233. doi: 10.3164/jcbn.40.229

Nkukwana, T. T., Muchenje, V., Pieterse, E., Mabusela, T. P., Hoffman, L. C., & Dzama, K. (2014a). Effect of Moringa oleifera leaf meal on growth performance, apparent digestibility, digestive organ size and carcass yield in broiled chickens. Livestock Science, 161, 139-146. doi: 10.1016/j.livsci.2014.01.001

NkukwanaT. T. , MuchenjeV., MasikaP. J., HoffmanL. C., DzamaK. & DescalzoA. M. (2014b). Fatty acid composition and oxidative stability of breast meat from broiler chickens supplemented with Moringa oleifera leaf meal over a period of refrigeration. Food Chemistry, 142, 255-261. doi: 10.1016/j.foodchem.2013.07.059

Nouman, W., Basra, S. M. A., Siddiqui, M. T., Yasmeen, A., Gull, T., & Alcayde, A. M. C. (2014). Potential of Moringa oleifera L. as livestock fodder crop: a review. Turkish Journal of Agriculture and Forestry, 38, 1-14. doi: 10.3906/tar-1211-66

Ojiako, E. N. (2014). Phytochemical analysis and antimicrobial screening of Moringa oleifera extract. The International Journal of Engineering and science, 3(3), 32-35.

Olson, M. E. (2010). Moringaceae: Drumstick Family. In Flora of North America Editorial Committee(Eds), Flora of North America North of Mexico (pp.167-169). Ney York and Oxford.

Olson, M. E., & Fahey, J. W. (2011). Moringa oleifera: un árbol multiusos para las zonas tropicales secas. Revista Mexicana de Biodiversidad, 82, 1071-1082.

Oluduro, O. A., Aderiye, B. I., Connolly, J. D., Akintayo, E. T., & Famurewa, O. (2010). Characterization and antimicrobial activity of 4-(b-D-Glucopyranosyl-1→4- a-L-rhamnopyranosyloxy)-benzyl thiocarboxamide; a novel bioactive compound from Moringa oleifera seed extract. Folia Microbiol, 55 (5), 422-426.

Omotesho, K. F., Sola, O. F E., Fayeye, T. R., Babatunde, R. O., Otunola, G. A., & Aliyu, T. H. (2013). The potential of Moringa tree for poverty alleviation and rural development: Review of evidences on usage and efficacy. International Journal of Development and Sustainability, 2(2), 799-813.

Oyeyinka, A. T., & Oyeyinka, S. A. (2016). Moringa oleifera as a food fortificant: Recent trends and prospects. Journal of the Saudi Society of Agricultural Sciences, doi: 10.1016/j.jssas.2016.02.002

Padilla, C., Fraga, N., & Suárez, M. (2012). Effect of the soaking time of moringa (Moringa oleifera) seeds on the germination and growth indicators of the plant. Cuban Journal of Agricultural Science, 46(4), 419- 421. Retrieved from http://www.ciencia-animal.org/cuban-journal-of-agricultural-science/articles/V46-N4-Y2012-P419-C-Padilla.pdf

Pakade, V., Cukrowskai, E., & Chimuka, L. (2013). Comparison of Antioxidant activity of Moringa oleifera and selected vegetables in South Africa. South African Journal of Science, 109(3/4), 2-5. doi: 10.1590/sajs.2013/1154

Paliwal, R., Sharma, V., & Pracheta (2011). A review on Horse radish tree (Moringa oleifera): A multipurpose tree with high economic and commercial importance. Asian Journal of Biotechnology, 3(4), 317-328.

Panchal, M. A., Murti, K., Lambole, V., & Gajera, V. (2010) Pharmacological properties of Moringa oleifera Lam. A Review. Pharmacologyonline 2, 768-775.

Panda, S., Kar, A., Sharma, P., & Sharma, A. (2013). Cardioprotective potential of N, a-L-rhamnophyranosyl vincosamide, an indole alkaloid, isolated from the leaves of Moringa oleifera in isoproterenol induced cardiotoxic rats: in vitro studies. Bioorganic & Medicinal Chemistry Letters, 23, 959-962. doi: 10.1016/j.bmcl.2012.12.060

Parthiban, R., Vijayakumar, S., Prabhu, S., & Yabesh, J. G. E. M. (2016). Quantitative traditional knowledge of medicinal plants used to treat livestock diseases from Kudavasal taluk of Thiruvarur district, Tamil Nadu, India. Revista Brasileira de Farmacognosia, 26(1), 109- 121. doi: 10.1016/j.bjp.2015.07.016

Pinheiro-Ferreira, P. M., Farias, D. F., de Abreu-Oliveira, J. T., & Urano-Carvalho, A. F. (2008). Moringa oleifera: bioactive compounds and nutritional potential. Revista de Nutrição Campinas, 21(4), 431-437.

Pontual, E. V., Carvalho, B. E., Bezerra, R. S., Coelho, L. C., Napoleão, T. H., & Paiva, P. M. (2012). Caseinolytic and milk-clothing activities from Moringa oleifera flowers. Food Chemistry, 135(3), 1848-1854. doi: 10.1016/j.foodchem.2012.06.087

Popoola, J. O., & Obeme, O. O. (2013). Local Knowledge, use pattern and geographical distribution of Moringa oleifera Lam. (Moringaseae) in Nigeria. Journal of Ethnopharmacology, 150, 682-691.

Prabhu, K., Murugan, K., Nareshkumar, A., Ramasubramanian, N., & Bragadeeswaran, S. (2011). Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine, 124-129.

Pritchard, M., Craven, T., Mkandawire, T., Edmosnon, A. S., & O’neil, J. G. (2010). A comparison between Moringa oleifera and chemical coagulants in the purification of drinking water-An alternative sustainable solution for developing countries. Physics and Chemistry of the Earth, 35, 798-805. doi: 10.1016/j.pce.2010.07.014

Promkun, C., Kupradinun, P., Tuntipopipat, S., & Butryee, C. (2010) Nutritive evaluation and effect of Moringa oleifera pod on clastogenic potential in the mouse. Asian Pacific Journal of Cancer Prevention, 11(3), 627-632.

Rady, M. M., Varma, C. B., & Howladar, S. M. (2013). Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract. Scientia Horticulturae, 162, 63-70. doi: 10.1016/j.scienta.2013.07.046

Rahman, M., Hassan, M., Kalam, A., Atabani, A. E., Memon, L. A., & Rahman, S. M. A. (2014). Performance and emission analysis of Jatropha curcas and Moringa oleifera methyl ester fuel blends in a multi-cylinder diésel engine. Journal of Clean Production, 65, 304-310. doi: 10.1016/j.jclepro.2013.08.034

Reddy, D. H. K., Harinath, Y., Seshaiah, K., & Reddy, A. V. R. (2010a). Biosorption of Pb (II) from aqueous solution using chemically modified Moringa oleifera tree leaves. Chemical Engineering Journal, 162(2), 626-634. doi: 10.1016/j.cej.2010.06.010

Reddy, D. H. K., Seshaiah, K., Reddy, A. V. R., Rao, M. M., & Wang, M. C. (2010b).Biosorption aqueous solutions by Moringa oleifera bark: Equilibrium and kinetics studies. Journal of Hazardous Materials, 174(1- 3), 831-838. doi: 10.1016/j.jhazmat.2009.09.128

Reddy, D. H. K., Ramana, D. K. V., Seshaiah, K., & Reddy, A. V. R., (2011). Biosorption of Ni (II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination, 268, 150-157. doi: 10.1016/j.desal.2010.10.011

Rezende, D., Nishi, L., Coldebella, P. F., Silva, M. F., Vieira, M. F., Vieira, A. M. S, Bergamasco, R., & Fagundes-Klen, M. R. (2016). Groundwater nitrate contamination: Assessment and treatment using Moringa oleifera Lam. seed extracts and activated carbon filtration. The Canadian Journal of Chemical Engineering, 94(4), 725-732. doi: 10.1002/cjce.22442

Sabo-Mohamed, A. K., Long, K., Lai, O. M., Syed-Muhammad, S. K., & Mohd-Ghazali, H. (2007). Frying quality and stability of high-oleic Moringa oleifera seed oil in comparison with other vegetable oils. Food Chemistry, 105(4), 1382-1389. doi: 10.1016/j.foodchem.2007.05.013

Sanjay, P., & Dwivedi, K. N. (2015). Shingru (Moringa oleifera Lam.): A critical review. International Journal of Ayurveda and Pharmaceutical Chemistry, 3(1), 217-227.

Sánchez-Martín, J., Ghebremichael, K., & Beltrán-Heredia, J. (2010). Comparison of single step and two steps purified coagulants from Moringa oleifera seed for turbidity and DOC removal. Bioresource Technology, 101(15), 6259-6261. doi: 10.1016/j.biortech.2010.02.072

Sashidhara, K. V., Rosaiah, J. N., Tyagi, E., Shukla, R., Raghubir, R., & Rajendran, S. M. (2009). Rare dipeptide and urea derivatives from roots of Moringa oleifera as potential anti-inflammatory and nociceptive agents. European Journal of Medicinal Chemistry, 44(1), 432-436. doi: 10.1016/j.ejmerch.2007.12.018

Sasikala, S., & Muthuraman, G. (2015). Reduction of Chemical oxygen demand (COD) in stabilization of pond water by various activated carbons. International Journal of ChemTech Research, 7(7), 2924-2928.

Satish, A., Kumar, R. P., Rakshith, D., Satish, S., & Ahmed, F. (2012). Antimutagenic and antioxidant activity of Ficus benghalensis stem bark and Moringa oleifera root extract. International Journal of Chemical and Analytical Science, 4, 45-48. doi: 10.1016/j.ijcas.2013.03.008

Shanker, K., Gupta, M. M., Srivastava, S. K., Bawankule, D. U., Pal, A., & Khanuja, S. P. S. (2007). Determination of bioactive nitrile glycoside(s) in drumstick (Moringa oleifera) by reverse phase HPLC. Food Chemistry, 105(1), 376-382. doi: 10.1016/j.foodchem.2006.12.034

Sharma, B. K., Rashid, U., Anwar, F., & Erhan, S. Z. (2009). Lubricant properties of Moringa oil using thermal and tribological techniques. Journal of Thermal Analysis and Calorimetry, 96(3), 999-1008. doi: 10.1007/s10973-009-0066-8

Singh, B. N., Singh, B. R., Singh, R. L., Prakash, D., Dhakarey, R., Upadhyay, G., & Singh, H. B. (2009). Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food and Chemical Toxicity, 47(6), 1109-1116. doi: 10.1016/j.fct.2009.01.034

Singh, N. (2012a). Panchakarma: Cleaning and rejuvenation therapy for curing the diseases. Journal of Pharmacognosy and Phytochemistry, 1(2), 1-9.

Singh, G. P., Garg, R., Bhardwaj, S., & Sharma, S. K. (2012b). Anti-inflammatory evaluation of leaf extract of Moringa oleifera. Journal of Pharmaceutical and Scientific Innovation, 1(1), 22-24.

Singh, R. S. G., Negi, P. S., & Radha, C. (2013). Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. Journal of Functional Foods, 5(4), 1883-1891. doi: 10.1016/j.jff.2013.09.009

Soliva, C. R., Kreuzer, M., Foidl, N., Foidl, G., Machmüller, A., & Hess, H. D. (2005). Feeding value of whole and extracted Moringa oleifera leaves for rumiants and their effects on rumial fermentation in vitro. AnimalFeed Science and Technology, 118(1-2), 47-62. doi: 10.1016/j.anifeedsci.2004.10.005

Suhartini, S., Hidayat, N., & Rosaliana, E. (2013). Influence of powdered Moringa oleifera seeds and natural filter media on the characteristics of tapioca starch wastewater. International Journal Of Recycling of Organic Waste in Agriculture, 2(12), 11. Retrieved from http://www.ijrowa.com/content/2/1/12al2013

Sulaiman, M. R., Zakaria, Z. A., Bujarimin, A. S., Somchit, M. N., Israf, D. A., & Moin, S. (2008). Evaluation of Moringa oleifera aqueous extract for antinociceptive and anti-inflammatory activities in animal models. Pharmaceutical Biology, 46(12), 838-845. doi: 10.1080/13880200802366710

Sultana, B., & Anwar, F. (2008). Flavonols (kaempferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chemistry, 108, 879-884. doi: 10.1016/j.foodchem.2007.11.053

Talreja, T. (2010). Screening of crude extract of flavonoids of Moringa oleifera against bacteria and fungal pathogen. Journal of Phytology, 2(11), 31-35.

Tavengwa, N. T., Cukrowska, E., & Chimuka, L. (2016). Application of raw and biochared Moringa oleifera seed powder for the removal of nitrobenzene from aqueous solutions. Desalination and Water Treatment. doi: 10.1080/19443994.2016.1151381

Tiamiyu, L. O., Okomoda, V. T., & Aonde, A. (2016). Growth performance of Oreochromis niloticus fingerlings fed Moringa oleifera leaf as replacement for soybean meal. Journal of Aquaculture Engineering and Fisheries Research, 2(2), 61-66. doi: 10.3153/JAEFR16008

Torres, A. W., Méndez, G. M., Durán, G. R., Boulogne, I., & Germosén, R. L. (2015). Medicinal plant knowledge in Caribean Basin: a comparative study of Afrocaribbean, Amerindian and Mestizo communities. Journal of Ethnobiology and Ethnomedicine, 11(18). doi: 10.1186/s13002-015-0008-4

Urmi, K. F., Masum, N. H., Zulfiker, A. H., Hossain, K., & Hamid, K. (2012). Comparative anti-microbial activity and brine shrimp lethality bioassays of different parts of the plant Moringa oleifera Lam. Journal of Applied Pharmaceutical Science, 2(2), 085-088. doi: 10.7324/JAPS.2012.21216

Verma, A. R., Vijayakumar, M., Mathela, C. S., & Rao, C. (2009). In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food and Chemical Toxicology, 47(9), 2196-2201. doi: 10.1016/j.fct.2009.06.005

Verma, K. (2014). An ethnobotanical study of plants used for the treatment of livestock diseases in Tikamgarh District of Bundelkhand, Central India. Asian Pacific Journal of Tropical Biomedicine, 4(1), 460-467. doi: 10.12980/APJTB.4.2014C1067

Vongsak, B., Sithisarn, P., & Gritsanapan, W. (2013) Simultaneous determination of crypto-chlorogenic acid, isoquercetin, and astragalin contents in Moringa oleifera leaf extracts by TLC-densitometric method. Evidence-Based Complementary and Alternative Medicine, 1-7. doi: 10.1155/2013/917609

Waterman, C., Cheng, D. M., Rojas-Silva, P., Poulev, A., Dreifus, J., Lila, M. A., & Raskin, I. (2014). Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry, 103, 114-122. doi: 10.1016/j.phytochem.2014.03.028

Yameogo, C. W., Bengaly, M. D., Savadogo, A., Nikiema, P. A., & Traore, S. A. (2011). Determination of chemical composition and nutritional values of Moringa oleifera leaves. Pakistan Journal of Nutrition, 10(3), 264-268. Retrievedd from http://docsdrive.com/pdfs/ansinet/pjn/2011/264-268.pdf

Younus, I., Siddiq, A., Assad, T., Baddar, S., Jameel, S., & Ashraf, M. (2015). Screening antiviral activity of Moringa oliefera L. leaves against foot and mouth disease virus. Global Veterinaria 15(4), 409-413. doi: 10.5829/idosi.gv.2015.15.04.10116

Yousaf, M., Bukhhari, S. A. A., Atiq, M., Zaman, Z., Ibrahim, M., Sandhua, S. E., Talib, F., Younas, M., Shafiq, M., Nasira, F., Mubeen, I., & Chatha, M. U. (2015). Management of late blight of tomato through application of different plant exreacts. Pakistan Journal of Phytopathology, 27(2), 169-174.

Zayed, M. S. (2012). Improvement of growth and nutritional quality of Moringa oleifera using different biofertilizer. Annals of Agricultural Science, 57(1), 53-62. doi: 10.1016/j.aoas.2012.03.004

Zhao, S., & Zhang, D. (2013) Supercritical fluid extraction and characterization of Moringa oleifera leaves oil. Separation and Purification Technology, 118, 497-502. doi: 10.1016/j.seppur.2013.07.046

Tables:

Table 1. Nutritional content of the parts of Moringa oleifera Lam.
Leaf f2 Leaf d2 LeAf d4 / Hoja d4 Leaf d1 Leaf d3 Seed husk1 Seed p1 Wings1 Stem4 Pod2
Moisture % 75.00 7.50 79.20 -- -- -- -- -- -- 86.90
Calories in 100 g 92.00 205.00 -- -- -- -- -- -- -- 26.00
Protein (g) 0.07 0.27 -- 0.26 0.44 0.10 0.37 0.07 0.06 0.03
Fat (g) 0.02 0.02 -- nd 0.01 0.02 0.42 nd nd 0.00
Carbohydrates (g) 0.13 0.38 -- -- -- -- -- -- -- 0.04
Fiber (g) 0.01 0.19 -- -- -- -- -- -- -- 0.05
Ash (mg∙g-1) -- -- -- 0.09 0.10 0.02 0.03 0.09 0.07 --
Minerals (g) 0.02 -- -- -- -- -- -- -- -- 0.02
Total phenols (mg∙g-1) -- -- -- -- 34.00 -- -- -- -- --
Tannins (mg∙g-1) -- -- -- -- 14.00 -- -- -- -- --
Saponinas (mg∙g-1) -- -- -- -- 50.00 -- -- -- -- --
Phytates (mg∙g-1) -- -- -- -- 31.00 -- -- -- -- --
Raw energy (MJ∙kg-1) -- -- -- 19.35 17.70 21.62 26.68 18.52 18.95 --
Carotene (vit. A) (mg) 0.07 0.19 1.93 -- -- -- -- -- -- --
β-carotene (mg) -- 0.93 -- -- -- -- -- -- --
Thiamine (B1) (mg) 0.00 0.00 -- -- -- -- -- -- -- --
Riboflavin (B2) (mg) 0.00 0.21 -- -- -- -- -- -- -- --
Niacin (B3) (mg) 0.01 0.08 -- -- -- -- -- -- -- --
Vitamin C (mg) 2.20 0.17 -- -- -- -- -- -- -- --
Ascorbic acid (mg) -- -- 6.60 -- -- -- -- -- -- --
nd = not detected; d = dehydrated; f = fresh; p = peeled; ext = extracted 1Abbas (2013); 2Dhakar et al. (2011); 3Makkar and Becker (1996); 4Nambiar and Seshadri (2001)
Table 2. Elements in different parts of Moringa oleifera Lam.
Element Leaf f4 Leaf d4 Leaf d6 Leaf d3 Leaf d5 Pod4 Pod p.j.2 Pod2 Flower2 Petioles f.p.2 Seed w/h2 Seed p2 Seed1 Stem2 Stem f.p.2 Root2
Calcium 4.400 20.03 22.40 - 0.019 0.300 0.100 0.180 0.170 0.270 0.720 0.120 0.143 0.340 0.180 0.300
Manganese 0.420 3.680 - - 0.062 0.240 - - - - 1.700 0.290 3.00x 10-3 - - -
Phosphorous 0.700 2.040 6.300 - 2.500 1.100 - - - - - - - - - -
Potassium 2.590 13.24 - - 17.70 0.240 2.740 4.450 3.510 2.510 1.710 1.100 2.550 4.420 1.970 2.050
Copper 0.007 0.006 - 0.032 0.009 0.031 - - - - - - 1.23 x 10-3 - - -
Iron 0.009 0.282 0.260 - 0.226 0.053 - - - - - - 1.11 x 10-2 - - -
Sulfur 1.370 8.700 - - - 1.370 - - - - - - - - - -
Selenium - - - - 0.027 - - - - - 0.000 - 4.97 x 10-4 - - -
Sodium - - - - 1.620 - 0.290 0.860 <0.1 <0.1 1.410 0.940 1.340 0.480 - < 0.1
Lithium - - - - - - - - - - - - 6.62x 10-6 - - -
Magnesium - - - - 4.340 - - - - - - - 1.500 - - -
Chrome - - - 0.578 <0.005 - - - - - - - 2.65 x 10-4 - - -
Nickel - - - - - - - - - - - - 0.25 x 10-4 - - -
Zinc 0.002 0.033 - 0.116 <0.005 - - - - - - - 1.10 x 10-2 - - -
Rubidium - - - 0.076 - - - - - - - - 5.43x10-4 - - -
Strontium - - - - - - - - - - - - 1.53x10-3 - - -
Lead - - - 0.004 - - - - - - - - 0.06x10-5 - - -
Thorium - - - 0.003 - - - - - - - - - - -
Barium - - - 0.890 - - - - - - - - 3.59x10-4 - - -
f=fresh;d = dehydrated; f.p. = flowering plant; i.p. = immature plant; w/h = with husk; p. = peeled Data are expressed in mg∙g-1. 1Al-anizi, Hellyer, and Zhang (2014); 2Amaglo et al. (2010); 3Asiedu-Gyekye et al. (2014); 4Dhakar et al. (2011); 5Freiberger et al. (1998); 6Nambiar and Seshadri (2001)
Table 3. Amino acid content in parts of Moringa oleifera Lam.
Amino acid Leaf d3 Leaf d2 Leaf f1 Leaf d1 Pod f1
Aspartic 10.6 12.8 -- -- --
Glutamic 11.69 20.9 -- -- --
Serine 4.78 7.19 -- -- --
Glycine 6.12 8.38 -- -- --
Histidine 3.12 3.78 1.498 6.13 1.1
Arginine 6.96 14.5 4.066 13.25 3.6
Threonine 5.05 7.09 1.177 11.88 3.9
Alanine 6.59 11 -- -- --
Proline 5.92 10.2 -- -- --
Tyrosine 4.34 8.33 -- -- --
Valine 6.34 10.8 3.745 10.63 5.4
Methionine 2.06 2.34 1.177 3.5 1.4
Isoleusine 5.18 7.82 2.996 8.25 4.4
Leusin 9.86 15.5 4.922 19.5 6.5
Phenylalanine 6.24 10.5 3.103 13.88 0.4
Lysine 6.61 9.17 3.424 13.25 1.5
Cysteine 1.19 3.87 -- -- --
Tryptophan 2.13 7.53 1.07 4.25 0.8
d = dehydrated; f = fresh Data are expressed in mg∙g-1. 1Dhakar et al. (2011); 2Freiberger et al. (1998); 3Makkar and Becker (1996);
Table 4. Fatty acid contents in different parts of Moringa oleifera Lam.
Fatty acids Oil1 Root2 Root f.p.2 Stem2 Stem f.p.2 Petioles f.p.2 Leaf2 Leaf f.p.2 Flower2 Pod g2 Pod m2 Seed w/h2 Seed p2
Myristic acid C14:0 - 0.46 0.42 0.6 0.62 0.66 0.13 0.14 0.16 0.34 0.1 0.07 0.11
Palmitic acid C16:0 6.45 39.4 41.3 47.8 47.1 37.3 26 25.3 33.6 48 9.16 8.4 9.05
Palmitoleic acid C16:1 0.97 0.53 1.68 0.37 1.35 0.63 0.56 0.55 0.22 0.97 1.44 1.91 2.27
Heptadecanoic acid C17:0 - 1.3 1.2 0.96 1.45 1.46 0.46 0.25 0.41 0.97 0.1 0.09 0.09
Heptadecenoic acid C17:1 - 0.03 0.12 0 0 0 0 0 0.28 0 0.03 0.01 0.06
Stearic acid C18:0 5.5 7.38 6.03 11.5 9,21 4.79 4.33 3.02 5.54 13.4 5.32 9.92 4.26
Oleic acid C18:1 ± 0.5 30.6 37 16.4 18.6 17.3 14 6.81 29 34.6 78.9 74.5 80.6
Linolenic acid C18:2 1.27 10.8 9.58 16.5 15.9 21.4 15.9 11.4 18.6 0.02 1.16 0.69 0.66
Linolenic acid C18:3 0.3 2.26 1.42 4 3.9 16.2 37.3 50.8 10.6 0.02 0.5 0.23 0.16
Arachidic acid C20:0 4.08 5.02 0.92 1.87 1.67 0.11 0.11 1.27 1.23 1.54 3.02 3.86 2.58
Eicosenoic acid C20:1 1.68 2.21 0.3 0.04 0.05 0.05 0.05 0.11 0.33 0.03 0.17 0.33 0.17
Behenic acid C22:0 6.16 0.02 0.01 0.04 0.05 0.05 0.05 0.01 0.01 0.03 0.03 0.01 0
Lignoceric acid C24:0 0.02 0.02 0.1 0 0.05 0.03 0.03 0.01 0.01 0.03 0.03 0.01 0
f.p..= flowering plant; i.p. = immature plant; w/h = with husk; p. = peeled; g = green; m = mature. Data expressed in g∙100 g-1. 1Freiberger et al. (1998); 2Nambiar and Seshadri (2001).
Table 5. Compounds isolated from different parts of M. oleifera and their biological activities.
Compound Biological activity Reference
4(βL-rhamnosyloxy)-benzyl isothiocyanate or Pterygospermin (Rb, S) Antibiotic and fungicide. Associated with inhibition of TNF-α and IL-2, reduces demyelination and axonal loss, useful for multiple sclerosis 3, 9
4-(4’-0-acetyl-β-L-rhamnosyloxy)- benzyl isothiocyanate (L) Associated with inhibition of TNF-α and IL-2 3
4-(β-D-glucopyranosyl -1→4-β- L- rhamnopyranosyloxy)-benzyl thiocarboxamide (S) Antibacterial 20
Feluric, gallic and ellagic acids (L) Antioxidant, antibacterial 30
Aurantiamide acetate, 1,3-dibenzylurea (R) Anti-inflammatory, anti-arthritic, analgesic 3, 24
Benzoic acid 4-0-β-rhamnosyl-(1-->2) β-glucoside (L) Help treat diabetes, typhoid, malaria, hypertension, stomach problems and amoebic dysentery, anti-inflammatory, analgesic 12
Chlorogenic and cryptochlorogenic acids (L) Anti-inflammatory, antioxidant, reduces lipids in plasma and liver and acute lung injury 24, 32
Unsaturated fatty acids (So) Nutritional and provides stability to oil 21
Alkaloids, flavonoids, diterpenes, tannins and glycosides (Ph) Anti-inflammatory activity 3
Essential amino acids (L, S) Aid in nutrient transport and storage 11, 14
α and β-amyrin (Sb, L) Antimicrobial, anti-inflammatory activity 33
β-carotene, Astragalin, Isoquercetin, tocopherols, vitamin C (L) Antioxidant 21, 32
Benzaldehyde 4-0-β-glucoside (L) Help treat diabetes, typhoid, malaria, hypertension, stomach problems and amoebic dysentery, anti-inflammatory, analgesic 8, 12
Benzyl isocyanate (Fp) Chemopreventive agent, reduces colitis 4
β-sitosterol (Sb, S, St, Fp) Hypotensive activity, decreases cortisol synthesis, immunosuppressant, antioxidant, antibronchoconstrictor, hepatoprotective, anti-inflammatory 1, 11, 9, 13, 28
Kaempferitrin (kaempferol-3,7- 0-β- dirhamnoside) (L) Hypoglycemic 18
Kaempferol (L, Fp) Antioxidant that protects against cancer, arthritis, obesity and inflammation 8
(-)-Catechin (S) Antioxidant, antibacterial 28
Kaempferol derivatives, Flavonol glycosides (L) Help treat diabetes, typhoid, malaria, hypertension, stomach problems and amoebic dysentery, anti-inflammatory, analgesic 12, 8
Sterols (So, S) Reduces cholesterol 2
Stigmasterol (Sb) Decreases serum cholesterol levels 5
Phenylmethanamine, 4β-D-glucopyranosyl -1-->4β-L- rhamnopyranosyloxy)- benzyl isocyanate (S) Antibacterial 20
Gibberellin (L) Stimulates plant growth 10
Lecithin (S) Blood thinner 7
Myricetin (L, R) Antioxidant, anticarcinogenic, antimutagenic, antidiabetic 29
Moringina (S) Cardiac stimulant, bronchodilator, muscle relaxants 27
Moringinina (L, Rb) Contributes to glucose homeostasis 19
N-a-L- rhamnophyranosyl vincosamide (L) Cardioprotective agent 22
Niazimicine, Niacimicin A and B (L, S) Inhibits TNF-α and IL-2, reduces blood pressure, chemopreventive, stimulates insulin release and antioxidant 1, 3, 6
Niaziminin, thiocarbamate (L) Associated with tumor reduction 1
Niaziridin (L, Fp) Facilitates the absorption of drugs (e.g. ampicillin), vitamins and nutrients through the gastrointestinal membrane 26
Niazirin (L, Fp, S) Antitumor and antibacterial activity 26, 6
Plasmin, Thrombin (L, R) Antimutagenic, blood anticoagulant 25
Water-soluble polysaccharides (Fp) Immunomodulator 16
Quercetin-3-glycoside (L) Hypoglycemic 15
Quercetin and some of its glucosides (L, Fp, S) Antioxidant, hepatoprotective, analgesic, vasodilatory, antiplatelet, anti-arthritic, antibacterial, anti-inflammatory, antiflu 1, 19, 20, 22
Rutin (L) Anti-inflammatory, antispasmodic, prevents cancer and hepatoprotective 22
Tocopherols: a-tocopherol,d-tocopherol, g-tocopherol (L, S, So) Antioxidant 32
Vanillin (L, S, Fp) Antioxidant 24
Vicenin-2 (L) Promotes epithelization in open wounds 17, 31
Violaxanthin (L) Useful in treating eye diseases 21
Vitamin A and β-carotenes (L, S, Fp) Protect eyes, skin, and heart, is antidiarrheal, and reduces the risk of scurvy 14, 23
Vitamin C (L) Protects against respiratory diseases 14
Zeaxanthin (L, S, Fp) Protects against UV rays and strengthens vision 21
Table 6. Medicinal properties of Moringa oleifera Lam.
Ailment Part of the plant used Ailment Part of the plant used
Abortifacient B F G L R Bronchitis L
Aphrodisiac F Carminative R
Enlarged spleen B F Night and childhood blindness L P
Analgesic B G L R Heal wounds L
Anemia L S Diarrhea L
Antimicrobial B F L R S Dysentery G
Anti-asthmatic G S Decreases cholesterol levels F L
Anticancer L S Diuretic B F G L R S
Anticlastogen P Scurvy L
Antidiabetic L Cardiac-circulatory stimulant F G L R S P
Antispasmodic B F L R S Stimulant in paralysis R
Antifertility B R Hemorrhoids L
Anti-inflammatory B F L R S P Hepatoprotective agent F L R
Antilithic R Hypotensive L
Antihypertensive L Eye and ear Infections L
Anthelmintic F Immunomodulator (cellular, humoral)
Antimalarial (larvicide) S Laxative L
Antioxidant B L R S Purgative L
Antipyretic L S Radioprotector L
Antitumor agent B L S Rheumatism G R
Anti-ulcerogenic agent B F L R Regulates hyperthyroidism L
Anti-urolithiasic agent R Rubefacient B G R
Vesicant B R
B = bark; F = flower; G = gum; H = leaf; R = root; S = seed; P = pod Aney et al. (2009); Dubey et al. (2013); Fahey (2005); Lim (2012); Panchal, Murti, Lambole, and Gajera (2010); Popoola and Obeme (2013)