1	https://doi.org/10.5154/r.ctas.2024.04.04
2	Artículo científico
3	
4	Pérdida de carbono orgánico del suelo en sistemas agrícolas de México por
F	combio climático
5	
6	
7	Leticia Citlaly López-Teloxa*
8	Alejandro Ismael Monterroso-Rivas
9	
10	Universidad Autónoma Chaningo, Carretera Mévico-Texcoco km 38 5 Chaningo, Texcoco, Estado
10	de Mávico C P 56230 Mávico
11	de Mexico, C. 1. 50250, Mexico.
12	
13	*Autor para correspondencia: al2300036p@chapingo.mx
14	
15	Resumen
16	El carbono orgánico del suelo (COS) es clave en la salud de los ecosistemas, va que influve en las
10	propiedades físicas químicas y microbiológicas del suelo, como la retención de agua la fertilidad
17 10	y la diversidad del microbioma. La modelación del COS mediante aprendizaje automático y
10	teledetección permite predecir cómo las prácticas agrícolas y el cambio climático afectan su
20	almacenamiento. El objetivo de este estudio fue modelar y provectar las variaciones en las reservas
20	de COS en suelos agrícolas de temporal y riego en México, bajo condiciones actuales y escenarios
21 22	futuros de cambio climático. Para ello, se desarrollaron modelos que relacionan el COS con
22	variables como el índice de Lang (precipitación y temperatura) altitud pendiente densidad
23	aparente clase textural y profundidad del suelo. Los modelos canturaron las características del
2 4 25	relieve del terreno y su relación con el tino de agricultura y los contenidos de COS en los suelos
26	Los mayores contenidos de COS se encontraron bajo agricultura de riego. Sin embargo, ante el

cambio climático, se prevén disminuciones en el COS de hasta 7 %, así como incrementos de temperatura de hasta 6 °C y aumentos de precipitación del 12 %. La disminución del COS podría agravar las emisiones de gases de efecto invernadero y reducir la capacidad del suelo para almacenar carbono. El estudio destaca la importancia de implementar prácticas de manejo sostenible y fomentar investigaciones multidisciplinarias que permitan mitigar los efectos adversos. Además, demuestra que es posible simular el comportamiento del COS y generar modelos útiles para evaluar escenarios y apoyar la toma de decisiones.

Palabras clave: reservas de COS, variabilidad climática, agricultura, modelado espacial,
degradación, disminución del COS.

20

37 **Recibido:** 2/10/2024

38 Aceptado: 14/11/2024

- 39
- 40
- 41

Introducción

42

43

El carbono orgánico del suelo (COS) es clave para la sostenibilidad agrícola, y su modelación 44 representa una herramienta clave para comprender el ciclo del carbono en los sistemas agrícolas y 45 evaluar su impacto en la sostenibilidad ambiental (Dionizio et al., 2020). El COS desempeña un 46 papel crucial en la productividad del suelo, ya que mejora la estructura del suelo, promueve la 47 retención de agua y nutrientes, y potencia la actividad microbiana (Meena et al., 2024). A nivel 48 global, la agricultura se ha identificado como una de las actividades con mayor influencia en la 49 pérdida de COS, debido a prácticas intensivas como el arado, la deforestación y el uso excesivo de 50 fertilizantes químicos (Canaza et al., 2023; Lal, 2004). Por ello, contar con predicciones precisas 51 sobre las dinámicas del COS de suelos agrícolas resulta crucial para diseñar estrategias de manejo 52 que permitan mitigar el cambio climático y mejorar la resiliencia de los ecosistemas agrícolas (Paz 53 54 et al., 2016; Smith & Olesen, 2010).

En los últimos años, el desarrollo de modelos predictivos del COS ha ganado relevancia debido a 55 la necesidad de evaluar el impacto de las prácticas agrícolas sobre la capacidad de los suelos para 56 57 secuestrar carbono (Guo et al., 2023; Mundada et al., 2024). Estos modelos integran variables clave, como la textura y el uso del suelo, las prácticas de manejo y las condiciones climáticas, y 58 59 permiten generar escenarios sobre el almacenamiento de carbono a corto y largo plazo (Paz et al., 2016). La modelación también permite identificar áreas de riesgo, donde el carbono almacenado 60 61 en el suelo se podría perder más rápidamente, lo cual ayudaría a priorizar las intervenciones de conservación en tierras agrícolas vulnerables (Vannier et al., 2022). 62

Los avances en las técnicas de aprendizaje automático y teledetección han permitido mejorar la precisión de los modelos de COS (Zayani et al., 2023). En particular, herramientas como el análisis espectral, la integración de datos satelitales y la aplicación de algoritmos de *machine learning* (como los bosques aleatorios y las redes neuronales artificiales) han sido exitosas para predecir los cambios en el COS a diferentes escalas espaciales (Hateffard et al., 2023). Estas técnicas mejoran la precisión en la estimación del contenido de carbono en los suelos, y facilitan la evaluación del impacto del cambio climático y de las prácticas agrícolas a nivel global (Abdoli et al., 2023).

Comprender y modelar el impacto de las prácticas agrícolas en el COS es fundamental para 70 desarrollar políticas agrícolas sostenibles. El objetivo de este estudio fue modelar y proyectar las 71 variaciones en las reservas de COS en suelos agrícolas de temporal y riego en México bajo 72 73 condiciones actuales y escenarios futuros de cambio climático. La hipótesis central es que los cambios futuros en temperatura y precipitación provocarán alteraciones significativas en las 74 condiciones ambientales, afectando de manera notable las reservas de COS. Este trabajo contribuye 75 a la comprensión de los patrones de almacenamiento de carbono en los suelos mexicanos y resalta 76 77 la importancia de integrar variables fisiográficas y climáticas en los modelos predictivos del COS.

- 78
- 79
- 80

Materiales y métodos

81

82

3

83	La proyección de COS bajo diferentes escenarios de cambio climático se realizó en dos etapas: 1)
84	delimitación de regiones agrícolas y 2) modelación y cálculo del COS en periodo base y escenarios
85	de cambio climático.
86	
87	
88	Delimitación de las regiones agrícolas en México
89	
90	
91	La delimitación de las regiones agrícolas en México se realizó mediante la integración de la
92	fisiografía del territorio y los principales sistemas agrícolas del país. La fisiografía de México se
93	divide en quince provincias, y está delimitada a escala de 1:250,000 (Instituto Nacional de
94	Estadística y Geografía [INEGI], 2001). Por su parte, los sistemas agrícolas se definieron a partir
95	del mapa de uso del suelo y vegetación correspondiente al año 2016, también a escala 1:250,000
96	(INEGI, 2021). Este mapa se procesó y clasificó para identificar áreas agrícolas, las cuales se
97	dividieron en sistemas de temporal y de riego de acuerdo con el criterio de la Convención de las
98	Naciones Unidas de Lucha contra la Desertificación (UNCCD), aplicado en México por la
99	Comisión Nacional de Zonas Áridas-Universidad Autónoma Chapingo (CONAZA-UACh, 2023).
100	Para integrar la información, se utilizó la herramienta ArcMap 10.8.1 (ESRI, 2020) y se aplicó una
101	intersección espacial entre el mapa de fisiografía y el mapa clasificado de sistemas agrícolas. Este
102	procedimiento permitió generar una capa que identificó 30 regiones agrícolas por provincia
103	fisiográfica y tipo de sistema (temporal o de riego).

Análisis y procesamiento de datos espaciales

- 104
- 105
- 106
- 107
- 108

Con el fin de garantizar la uniformidad en los mapas generados, se utilizó una cuadrícula regular compuesta por polígonos de 1 000 × 1 000 m. Este enfoque resultó en 325 166 unidades espaciales, las cuales abarcan toda el área agrícola del país. Para la construcción de la base de datos, se extrajo información de cada polígono y se asignaron variables fundamentales para el análisis. Además de las regiones agrícolas, se consideraron las siguientes variables: COS, altitud, pendiente, índice de Lang, densidad aparente del suelo, profundidad del perfil edáfico y clasificación de textura del suelo.

- 116
- 117

Carbono orgánico del suelo

118

Para el periodo base, se utilizó la información reportada en el primer informe bienal de México
(Instituto Nacional de Ecología y Cambio Climático-Secretaría de Medio Ambiente y Recursos
Naturales [INECC-SEMARNAT], 2015), el cual incluía el desglose del COS (%) para 2001 y 2016,
según el tipo de vegetación (Cuadro 1). Con esa información, se generó un mapa de COS para cada
año mediante la siguiente ecuación (1):

124

125 $COS = \% COS \times DAP \times PS$

126

donde *COS* es carbono orgánico del suelo (t·ha⁻¹), *DAP* es densidad aparente (t·m⁻³), *PS* es
profundidad del suelo (cm) y %*COS* es el porcentaje de COS. Se asumió una profundidad de 30
cm, de acuerdo con el *Intergovernmental Panel on Climate Change* (IPCC, 2006), ya que a esta
profundidad la actividad microbiana es más activa (Paz & Etchevers, 2016). Para obtener el valor
representativo del COS en el periodo base, se calculó el promedio de los valores correspondientes
a 2001 y 2016.

El valor del COS obtenido fue clasificado en cinco rangos: menor a 40 t·ha⁻¹, 40 a 50 t·ha⁻¹, 50 a
60 t·ha⁻¹, 60 a 70 t·ha⁻¹ y mayor a 70 t·ha⁻¹. Esta clasificación permite una evaluación más detallada
del COS y facilita la interpretación de las posibles variaciones en las reservas de COS bajo
diferentes escenarios de cambio climático.

(1)

Tipo de vegetación	DAP (t·m ⁻³)	COS (%) 2001	COS (%) 2016
Agrícola anual	1.23	3.07	1.27
Agrícola permanente	1.22	4.96	1.85
Agua	1.25	2.26	0.85
Asentamientos	1.22	0.98	1.21
Bosque cultivado	1.23	2.90	0.88
Bosque de coníferas primario	1.17	5.25	3.12
Bosque de coníferas secundario	1.19	3.38	3.02
Bosque de encino primario	1.18	2.22	3.2
Bosque de encino secundario	1.19	1.64	2.79
Bosque mesófilo de montaña primario	1.17	6.67	5.03
Bosque mesófilo de montaña secundario	1.16	9.63	6.59
Especial otros tipos leñoso primario	1.27	1.48	1.23
Especial otros tipos leñoso secundario	1.21	4.79	3.49
Especial otros tipos no leñoso primario	1.55	1.70	0.3
Matorral xerófilo leñoso primario	1.25	1.12	1.37
Matorral xerófilo leñoso secundario	1.21	1.84	1.82
Matorral xerófilo no leñoso primario	1.25	1.27	1.03
Matorral xerófilo no leñoso secundario	1.24	1.8	0.91
Selva caducifolia primario	1.21	2.86	2.35
Selva caducifolia secundario	1.2	2.16	2.3
Selva perennifolia primario	1.12	7.95	6.52
Selva perennifolia secundario	1.19	4.56	3.94
Selva subcaducifolia primario	1.14	4.13	4.53
Selva subcaducifolia secundario	1.2	1.89	2.35
Vegetación hidrófila leñosa primario	1.24	8.92	6.41
Vegetación hidrófila no leñoso primario	1.23	5.24	1.56
Otras tierras	1.3	0.93	0.39

Cuadro 1. Densidad aparente (DAP) y carbono orgánico del suelo (COS) por tipo de vegetación.

	Pastizal	1.22	2.78	1.45
139	Fuente: Ada	ptado de INECC-SEMA	RNAT (2015).	
140				
141	V	ariables independien	tes	
142				
143	Se seleccionaron seis variables del s	uelo y del entorno para 1	nodelar la relació	n del COS:
144 145 146	 Índice de Lang. Los datos d México se extrajeron de la b T y P, se calculó el índice de l 	le temperatura media (T, ase de datos WorldClim Lang para los años 2001 y	°C) y precipitació (2024). Para eval v 2016 mediante la	ón anual (P, mm) de uar la relación entre a siguiente ecuación:
147				
148	Índice de Lang $=\frac{P}{T}$			(2)
149				
150 151 152 153	2. Altitud y pendiente del te Elevaciones Mexicano (CEI estos datos, se generó el n ArcMap 10.8.1 (ESRI, 2020	erreno. La altitud (m s M) con una resolución d napa de pendiente del t).	. n. m.) se obtuv le 15 m (INEGI, erreno (%) medi	vo del Continuo de 2013b). A partir de ante la herramienta
154	3. Clase textural del suelo, de	nsidad aparente y prof	undidad del suel	o. El tipo de textura
155 156	del suelo, la densidad aparen "Serie II: Conjunto de datos	nte (t·m ⁻³) y la profundio de perfiles de suelos" a o	lad del suelo (m) escala de 1:250 00	se obtuvieron de la 00 (INEGI, 2013a).
157 158 159	4. Modelación del COS. Se de Se utilizaron modelos de reg se consideró el COS del peri	sarrollaron modelos para resión lineal (Ecuación í odo base como variable	cada una de las 30 3) y exponencial (dependiente:	0 regiones agrícolas. (Ecuación 4), donde
160			<i>V</i> 0	D 4 D -
161 162	$COS = \beta_0 + \beta_1 \times \text{indice de Lang}$ $\beta_r \times \text{clase textural} + \beta_c \times \text{nrofu}$	+ $\beta_2 \times altitud + \beta_3 \times p$ ndidad del suelo	pendiente + β_4 >	$\langle DAP + (3) \rangle$
163	, , , , , , , , , , , , , , , , , , , ,			

164	$\log(COS) = \beta_0 + \beta_1 \times indice \ de \ Lang + \beta_2 \times altitud + \beta_3 \times pendiente + \beta_4 \times DAP +$	
165	$\beta_5 \times clase textural + \beta_6 \times profundidad del suelo$	(4)

166

167 Se seleccionó el modelo final para cada región agrícola en función de la significancia 168 estadística (P < 0.05) de las variables. Para identificar el mejor modelo, se calculó el 169 coeficiente de determinación (\mathbb{R}^2), el error cuadrático medio (ECM), y los criterios de 170 información de Akaike (AIC) y Bayesiano (BIC), mediante el programa RStudio 2023.06.0 171 Build 421 (Posit team, 2023).

172 173

Validación de modelos

174

La validación se realizó mediante la comparación de los valores observados en el periodo base con 175 176 los predichos por los modelos, con el fin de evaluar su precisión y fiabilidad. Se aplicaron seis pruebas estadísticas para analizar errores y sesgos: 1) raíz cuadrada del error cuadrático medio 177 178 (RECM) y 2) error absoluto medio (EAM) para cuantificar la precisión, 3) coeficiente de determinación (R²) para evaluar la variabilidad, 4) porcentaje de error absoluto medio (PEAM) 179 para tener una perspectiva relativa del error, 5) índice de concordancia de Lin para medir la 180 similitud entre predicciones y observaciones, y 6) análisis de sesgo (promedio de diferencias) para 181 182 detectar posibles desviaciones sistemáticas. Estos análisis se realizaron en RStudio 2023.06.0 Build 421 (Posit team, 2023). 183

- 184
- 185

Proyecciones bajo escenarios de cambio climático

186

Para proyectar escenarios futuros bajo condiciones de cambio climático, se reemplazaron los
valores del índice de Lang del periodo base por las proyecciones futuras (2081-2100). Estas
proyecciones se basaron en las temperaturas medias (°C) y las precipitaciones anuales (mm) de los
modelos climáticos HadGEM3-GC31-LL, MIROC6 y MPI-ESM1-2-HR, de acuerdo con la
trayectoria socioeconómica compartida SSP5-8.5 (WorldClim, 2024).

192	
193	
194	Resultados y discusión
195	
196	
197	Distribución de las regiones agrícolas en México
198	
199	
200	En México, el 17.4 % de la superficie nacional es de uso agrícola (Cuadro 2). De esta área, el 68
201	% corresponde a la agricultura de temporal, mientras que el 32 % se destina a la agricultura de
202	riego (Figura 1a). Entre los cultivos más destacados bajo agricultura de temporal se encuentran el
203	maíz y el frijol (Comisión Nacional del Agua [CONAGUA], 2021; INEGI, 2023). Por su parte, en
204	la agricultura de riego destacan el maíz, el trigo, el sorgo, la alfalfa, la caña de azúcar y el frijol
205	(INEGI, 2024). Durante el periodo de referencia, se cosecharon 15 025 424.96 ha a nivel nacional
206	en el año agrícola, de las cuales el 75 % eran de la agricultura de temporal (Servicio de Información
207	Agroalimentaria y Pesquera [SIAP], 2023). La producción de maíz en condiciones de temporal es
208	importante para la mayoría de los agricultores de México, lo cual subraya la importancia de las
209	precipitaciones para la sostenibilidad de la agricultura de temporal (Conde et al., 2006).

Cuadro 2. Regiones agrícolas y superficie.

Agricultura	Provincia	Superficie (ha)
	Llanura Costera del Pacifico	1 683 000
	Península de Baja California	292 200
Diago	Mesa del Centro	621 100
Riego	Llanura Costera del Golfo Sur	188 200
	Llanura Sonorense	700 300
	Sierra Madre Occidental	757 700

	Llanura Costera del Golfo Norte	1 014 100
	Península de Yucatán	207 900
	Sierra Madre del Sur	698 200
	Sierras de Chiapas y Guatemala	75 000
	Sierra Madre Oriental	410 600
	Cordillera Centroamericana	79 200
	Grandes Llanuras de Norteamérica	267 800
	Sierras y Llanuras del Norte	1 211 400
	Eje Neovolcánico	2 355 300
	Sierra Madre Occidental	2 949 500
	Mesa del Centro	2 017 200
	Llanura Costera del Golfo Norte	2 095 800
	Península de Baja California	101 900
	Llanura Sonorense	38 800
	Llanura Costera del Pacifico	348 300
Temporal	Sierra Madre del Sur	2 571 000
	Eje Neovolcánico	5 526 000
	Cordillera Centroamericana	656 600
	Sierras de Chiapas y Guatemala	934 700
	Grandes Llanuras de Norteamérica	259 500
	Sierra Madre Oriental	1 783 600
	Sierras y Llanuras del Norte	155 200
	Llanura Costera del Golfo Sur	1 742 500
	Península de Yucatán	778 900
	Superficie agrícola	32 521 500
	Superficie nacional	187 079 200

212 Nota: No se consideró la superficie litoral y el territorio insular no cartografiable en la superficie

total.

213

214

Figura 1. a) Distribución de la agricultura en México y b) contenido de carbono orgánico del
 suelo (COS) en el periodo base.

La Llanura Costera del Pacífico destina el 54 % de su superficie a la agricultura de riego. Esta
provincia abarca los estados de Sinaloa y Nayarit, y se extiende hacia el sur hasta incluir partes de
Jalisco y Colima. La región se caracteriza por su geografía plana y su cercanía con el océano
Pacífico. En contraste, el Eje Neovolcánico dedica el 36 % de su superficie a la agricultura de
temporal, e incluye principalmente los estados de Jalisco, Michoacán, Estado de México, Puebla y
Veracruz.

Carbono orgánico almacenado en sistemas agrícolas

El análisis del COS en sistemas agrícolas reveló que los valores superiores a 70 t·ha⁻¹ abarcan el
37 % de la superficie agrícola nacional. Los rangos entre 50 a 60 y 60 a 70 t·ha⁻¹ cubren 13 y 14 %
de la superficie agrícola, respectivamente, y predominan en la Llanura Costera del Pacífico. Los
valores de 40 a 50 t·ha⁻¹ se concentran mayoritariamente en el centro del país, específicamente en
el eje Neovolcánico, y cubren el 35 % del área agrícola. Los valores menores a 40 t·ha⁻¹ tienen una

235 distribución limitada, al cubrir apenas el 1 % de la superficie agrícola (Figura 1Error! Reference
236 source not found.b).

En la Península de Yucatán se registraron los valores más altos de COS para ambos tipos de 237 agricultura: 116 t·ha⁻¹ en cultivos de temporal y 112 t·ha⁻¹ en sistemas de riego. Le siguen las Sierras 238 de Chiapas, con 84 t·ha⁻¹ en temporal y 81 t·ha⁻¹ en riego (Figura 2). La región sur del país se 239 distingue por su notable diversidad de cultivos (INEGI, 2007). Por ejemplo, en la Península de 240 Yucatán, los sistemas de milpa almacenan hasta 58.39 t·ha⁻¹ de COS (Flores-Delgadillo et al., 2011; 241 González-Molina et al., 2008; Shangl & Tiessen, 2003), mientras que, en la Sierra de Chiapas y 242 Guatemala, se han documentado cultivos de milpa, maíz, café y sistemas agroforestales que 243 almacenan hasta 90.8 t·ha⁻¹ (de Jong et al., 1999; Flores-Delgadillo et al., 2011; Mendoza et al., 244 2003). 245

246

251

252 **Proyección del COS con escenarios futuros de cambio climático**

253

254

De las 30 regiones agrícolas evaluadas, se generaron modelos para 27, ya que tres regiones carecían de datos suficientes para construirlos. Según los criterios básicos de modelado, se necesitan al menos tres puntos de datos para establecer una relación entre variables y obtener un ajuste estadístico básico (Montgomery et al., 2021). Para cada una de las 27 regiones, se compararon modelos lineales y exponenciales, con lo cual se generaron 54 modelos (27 de cada uno).

260 Los modelos desarrollados mostraron una precisión razonable en la predicción del COS, aunque presentan errores esperados. Los indicadores estadísticos evidenciaron que, a pesar de las 261 262 limitaciones, los resultados son suficientemente confiables para interpretar tendencias en el contenido de COS. El valor de RECM sugiere que, en promedio, las predicciones del modelo 263 difieren en 23 unidades respecto a los valores observados. El EAM muestra que el error absoluto 264 promedio en las predicciones es de aproximadamente 17 unidades. El PEAM revela que las 265 predicciones se desvían en aproximadamente 26 % de los valores observados. El R² explica 266 alrededor del 25 % de la variabilidad del COS, lo cual sugiere que gran parte de la variabilidad no 267 está siendo capturada por los modelos, mientras que un sesgo de -0.61 indica que los modelos 268 tienden a subestimar ligeramente el contenido de COS. Finalmente, el índice de Lin de 0.685, junto 269 con un intervalo de confianza estrecho (0.409 a 0.420), sugiere una concordancia moderada entre 270 los valores predichos y observados. 271

El valor bajo de R² refleja que existen factores que influyen en la dinámica del COS que no están 272 siendo considerados. Aunque un R² bajo no invalida los modelos, resalta la necesidad de integrarlos 273 con otros factores relevantes; por ejemplo, prácticas de manejo del suelo (como la rotación de 274 275 cultivos, la cobertura vegetal o la fertilización) y factores como la conversión de tierras agrícolas 276 en áreas urbanas han mostrado tener un impacto importante en los niveles de COS (Qiu et al., 2013). Asimismo, la erosión puede reducir la capacidad del suelo para almacenar carbono (Gómez 277 et al., 2020), y la actividad microbiana, que varía en función de factores climáticos, nutrientes y 278 tipo de suelo, podría no estar siendo representada adecuadamente en el modelo (Zsolt et al., 2020). 279

La utilidad de los modelos, a pesar de sus limitaciones, es respaldada por métricas adicionales
como el EAM (Li, 2017). En India, se obtuvieron valores de EAM de hasta 52 y RECM de 130
para modelos climáticos múltiples proyectados (Rashiq et al., 2024), mientras que en Irán, los

resultados de EAM y RECM, de modelos para predecir el contenido de COS en suelos agrícolas
enriquecidos con materiales calcáreos, fueron 0.0056 y 0.62 % de los valores reales,
respectivamente (Abdoli et al., 2023).

En la Figura 3 se muestran los cambios proyectados en el índice de Lang, lo cual reflejan un
impacto potencial significativo en las reservas de COS en México. Las proyecciones indican una
disminución del índice en áreas del norte y centro del país, asociada a incrementos de temperatura
y disminuciones de precipitación. Estas variaciones afectan directamente los procesos de
descomposición de materia orgánica y, por ende, la dinámica del COS (Chen et al., 2020; Jia et al.,
2020).

292

Figura 3. Proyecciones de cambios en el índice de Lang y el carbono orgánico del suelo (COS)
 en zonas agricolas.

La tendencia general indica que, bajo escenarios climáticos futuros, las condiciones serán cada vez 297 más desfavorables para la acumulación de carbono en la mayoría del territorio mexicano. Las zonas 298 299 donde disminuye el índice de Lang tienden a mostrar una reducción del COS, lo cual sugiere que un aumento de la temperatura y una posible reducción de la humedad pueden contribuir a la 300 301 degradación del suelo y a la liberación de carbono almacenado (Luković et al., 2024; Wiesmeier et al., 2019). Esto resalta la importancia de emplear múltiples modelos climáticos para evaluar la 302 303 vulnerabilidad del suelo y desarrollar estrategias de adaptación que mitiguen los impactos en sistemas agrícolas y naturales. 304

Con incrementos de temperatura de hasta 6 °C, los modelos estiman una pérdida de 7 % del COS en sistemas de agricultura de riego y de 6 % en sistemas de agricultura de temporal (Figura 4). A pesar de las tendencias negativas, se espera que la precipitación aumente un 12 % en zonas de agricultura de riego y disminuya un 12 % en zonas de agricultura de temporal. Las altas temperaturas pueden acelerar la descomposición de la materia orgánica y reducir las reservas del COS, al favorecer la actividad microbiana y, por ende, la actividad enzimática (Liu et al., 2024a; Liu et al., 2024b).

Por otro lado, las variaciones en la precipitación influyen directamente en los niveles de humedad 312 del suelo, factor clave en el proceso de descomposición y en las tasas de respiración microbiana. 313 Cuando la precipitación aumenta, como en las zonas de riego, los niveles de humedad del suelo 314 315 también se incrementan, lo cual favorece una mayor mineralización del COS debido a la intensificación de la actividad microbiana (Zhao et al., 2021). Sin embargo, un exceso de humedad 316 puede generar condiciones anaeróbicas y promover la liberación de gases de efecto invernadero 317 como metano (da Cunha-Santino & Bianchini, 2023). En contraste, la disminución de la 318 319 precipitación en zonas de temporal puede limitar la actividad microbiana al reducir la humedad del 320 suelo, con lo cual disminuyen las tasas de respiración y descomposición del COS (Liu et al., 2017). 321 La interacción compleja entre temperatura, precipitación, humedad y actividad microbiana es 322 fundamental para comprender cómo las condiciones climáticas futuras podrían modificar la 323 estabilidad del COS (Wang et al., 2025).

Un análisis global sugiere que los suelos agrícolas han perdido un promedio de 2.5 a 3.9 % de COS
desde 1919, los cual se atribuye a los cambios en las condiciones climáticas (Poeplau & Dechow,

2023). Por ejemplo, en China se reportó que un aumento de 4 °C provocó una disminución de 17
% en las reservas de COS en suelos agrícolas (Wang et al., 2023).

Este estudio se centra exclusivamente en el impacto de la variación de la temperatura y la precipitación; sin embargo, en México se han perdido 13 300 Gt de carbono en tierras de cultivo desde 1990 hasta 2015 (SEMARNAT-INECC, 2018). Además, las prácticas agrícolas han reducido en un 21% las existencias de COS en tierras cultivables, lo cual destaca la influencia de la gestión de la tierra en la dinámica del COS (Stolbovoy & Fil, 2023).

333

334

335

Figura 4. Dinámica del carbono orgánico del suelo: comparación entre línea base y escenarios futuros de cambio climático con diferentes modelos.

337

336

Es importante destacar que las variaciones en la temperatura y la precipitación impactan directamente en el desarrollo y rendimiento de los cultivos, al aumentar su vulnerabilidad frente a condiciones adversas (IPCC, 2022; Wheeler & von Braun, 2013). Arce-Romero et al. (2020) y Monterroso-Rivas et al. (2018) señalan que cultivos como el frijol y el trigo podrían experimentar reducciones de hasta 40 % en algunas regiones de México debido al cambio climático. Estas pérdidas potenciales representan un desafío significativo para la seguridad alimentaria y la sostenibilidad de la agricultura (Food and Agriculture Organization of the United Nations [FAO],2020).

La implementación de prácticas de manejo sostenible de la tierra tiene un gran potencial para 346 347 recuperar las reservas de COS. Este incremento no solo mejora la fertilidad del suelo, sino que también estabiliza el rendimiento de los cultivos (Page et al., 2020). Técnicas como la conservación 348 de agua y suelo, el uso de compost y la rotación de cultivos aumentan la materia orgánica del suelo, 349 350 mejoran la estructura y retención de agua del suelo, y ayudan a contrarrestar los efectos adversos 351 del cambio climático (Frelih-Larsen et al., 2022; Mu et al., 2024). Asimismo, se ha señalado que 352 la adopción de sistemas agroforestales y la restauración de tierras degradadas pueden revertir las pérdidas de COS y contribuir a la resiliencia climática. Estas intervenciones son clave para capturar 353 carbono adicional en los suelos y generar beneficios a largo plazo para la sostenibilidad agrícola y 354 355 la mitigación del cambio climático (Naba et al., 2024).

- 356
- 357
- 358

Conclusiones

359 360

En el estudio se logró modelar y proyectar las variaciones en las reservas de COS en suelos agrícolas de México bajo distintos escenarios climáticos. Los resultados obtenidos proporcionan información valiosa para la toma de decisiones en la gestión de suelos. Aunque no se identificaron áreas específicas de riesgo, los hallazgos pueden ser útiles para orientar intervenciones de conservación.

El cambio climático, mediante el aumento de temperatura y la variabilidad en la precipitación, afectará negativamente las reservas de COS. Tanto los suelos de riego como los de temporal podrían experimentar una pérdida significativa de carbono, lo cual podría incrementar las emisiones de gases de efecto invernadero y reducir la capacidad de almacenamiento de carbono en el suelo. Las proyecciones generadas permiten anticipar el comportamiento del COS, aunque presentan un
margen de incertidumbre inherente. Si bien los modelos incluyeron factores climáticos y edáficos,
es importante considerar que otras variables, como las prácticas agrícolas, también influyen en los
resultados.

Aunque no se identificaron áreas de alto riesgo, los resultados pueden ayudar a priorizar acciones
de conservación en suelos agrícolas vulnerables. Estos hallazgos ofrecen una base para diseñar
políticas y prácticas que mitiguen los efectos del cambio climático.

El estudio resalta la necesidad de adoptar prácticas agrícolas sostenibles para preservar el carbono
en el suelo. Las proyecciones indican una pérdida de COS en escenarios futuros, lo que subraya la
importancia de implementar medidas de conservación para mitigar los efectos del cambio climático
en la agricultura.

Por último, para hacer el modelo más robusto, se sugiere incluir más variables explicativas, como la actividad microbiana y las prácticas agrícolas, así como aplicar modelos no lineales para capturar mejor las interacciones entre variables, utilizar datos de mayor resolución temporal y espacial, realizar validación cruzada, y optimizar los parámetros para mejorar la precisión y reducir la incertidumbre.

387

388

Referencias

Abdoli, P., Khanmirzaei, A., Hamzeh, S., Rezaei, S., & Moghimi, S. (2023). Use of remote sensing
data to predict soil organic carbon in some agricultural soils of Iran. *Remote Sensing Applications: Society and Environment, 30*, 100969.
https://doi.org/10.1016/j.rsase.2023.100969

Arce-Romero, A., Monterroso-Rivas, A. I., Gómez-Díaz, J. D., Palacios-Mendoza, M. Á., NavarroSalas, E. N., López-Blanco, J., & Conde-Álvarez, A. C. (2020). Crop yield simulations in
Mexican agriculture for climate change adaptation. *Atmosfera*, 33(3), 215-231.
https://doi.org/10.20937/ATM.52430

Canaza, D., Calizaya, E., Chambi, W., Calizaya, F., Mindani, C., Cuentas, O., Caira, C., & Huacani,
 W. (2023). Spatial distribution of soil organic carbon in relation to land use, based on the

- weighted overlay technique in the high Andean Ecosystem of Puno-Peru. *Sustainability*, *15*(13), 10316. https://doi.org/10.3390/su151310316
- Chen, Q., Niu, B., Hu, Y., Luo, T., & Zhang, G. (2020). Warming and increased precipitation
 indirectly affect the composition and turnover of labile-fraction soil organic matter by
 directly affecting vegetation and microorganisms. *Science of the Total Environment, 714*,
 136787. https://doi.org/10.1016/j.scitotenv.2020.136787
- 405 Comisión Nacional del Agua (CONAGUA). (2021). Estadísticas agrícolas de los distritos de
 406 temporal tecnificado, año agrícola 2020-2021. CONAGUA.
 407 https://www.gob.mx/conagua/documentos/estadisticas-agricolas-de-los-distritos-de408 temporal-tecnificado
- 409 Comisión Nacional de Zonas Áridas-Universidad Autónoma Chapingo (CONAZA-UACh).
 410 (2023). Informe nacional 2022 de acciones contra la desertificación, degradación de tierras
 411 y sequía en México. CONAZA-UACh.
- Conde, C., Ferrer, R., & Orozco, S. (2006). Climate change and climate variability impacts on
 rainfed agricultural activities and possible adaptation measures. A Mexican case study. *Atmósfera, 19*(3), 181-194. https://www.redalyc.org/pdf/565/56519303.pdf
- da Cunha-Santino, M. B., & Bianchini, I. (2023). Reviewing the organic matter processing by
 wetlands. Acta Limnologica Brasiliensia, 35, e19. https://doi.org/10.1590/S2179-975X3423
- de Jong, B., Cairns, M., Haggerty, P., Ramírez, N., Ochoa, S., Mendoza, J., González, M., & March,
 I. (1999). Land-use change and carbon flux between 1970s and 1990s in central highlands of
 Chiapas, Mexico. *Environmental Management*, 23(3), 373-385.
 https://doi.org/10.1007/s002679900193
- Dionizio, E. A., Pimenta, F. M., Lima, L. B., & Costa, M. H. (2020). Carbon stocks and dynamics
 of different land uses on the Cerrado agricultural frontier. *PLoS ONE*, *15*(11), e0241637.
 https://doi.org/10.1371/journal.pone.0241637
- 424 ESRI. (2020). ArcMap Desktop 10.8.1 [Software]. https://desktop.arcgis.com/es/arcmap/latest/get 425 started/installation-guide/installing-on-your-computer.htm

- Flores-Delgadillo, L., Fedick, S. L., Solleiro-Rebolledo, E., Palacios-Mayorga, S., OrtegaLarrocea, P., Sedov, S., & Osuna-Ceja, E. (2011). A sustainable system of a traditional
 precision agriculture in a Maya homegarden: Soil quality aspects. *Soil and Tillage Research*, *113*(2), 112-120. https://doi.org/10.1016/j.still.2011.03.001
- Food and Agriculture Organization of the United Nations (FAO). (2020). *The state of food and agriculture.* Overcoming water challenges in agriculture. FAO.
 https://doi.org/10.4060/cb1447en
- Frelih-Larsen, A., Riedel, A., Hobeika, M., Scheid, A., Gattinger, A., & Niether, W. (2022). *Role of soils in climate change mitigation*. German Environment Agency
- Gómez, J. A., Guzmán, G., Toloza, A., Resch, C., García-Ruíz, R., & Mabit, L. (2020). Variation
 of soil organic carbon, stable isotopes, and soil quality indicators across an erosiondeposition catena in a historical Spanish olive orchard. *Soil*, 6(1), 179-194.
 https://doi.org/10.5194/soil-6-179-2020
- González-Molina, L., Etchevers-Barra, J. D., & Hidalgo-Moreno, C. (2008). Carbono en suelos de
 ladera: factores que deben considerarse para determinar su cambio en el tiempo. *Agrociencia*,
 42(7), 741-751. https://www.redalyc.org/articulo.oa?id=30211207001
- Guo, Y., Zeng, Z., Wang, J., Zou, J., Shi, Z., & Chen, S. (2023). Research advances in mechanisms
 of climate change impacts on soil organic carbon dynamics. *Environmental Research Letters 18*(10), 103005. Institute of Physics. https://doi.org/10.1088/1748-9326/acfa12
- Hateffard, F., Szatmári, G., & Novák, T. J. (2023). Applicability of machine learning models for
 predicting soil organic carbon content and bulk density under different soil conditions. *Soil Science Annual*, 74(1), 165879. https://doi.org/10.37501/soilsa/165879
- Instituto Nacional de Ecología y Cambio Climático-Secretaría de Medio Ambiente y Recursos
 Naturales (INECC-SEMARNAT). (2015). *Primer Informe Bienal de Actualización ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático*. INECC SEMARNAT https://www.gob.mx/inecc/documentos/primer-informe-bienal-de actualizacion-ante-la-convencion-marco-de-las-naciones-unidas-sobre-el-cambio-climático

453 Instituto Nacional de Estadística y Geografía (INEGI). (2001). Conjunto de datos vectoriales fisiográficos. Continuo nacional serie I. Provincias fisiográficas [Conjunto de datos]. INEGI 454 https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825267575 455 456 Instituto Nacional de Estadística y Geografía (INEGI). (2007). Censo agrícola, ganadero y forestal 2007. INEGI. https://www.inegi.org.mx/programas/cagf/2007/default.html#Tabulados 457 Instituto Nacional de Estadística y Geografía (INEGI). (2013a). Conjunto de datos de perfiles de 458 000. suelos. Escala 1:250 Serie II. INEGL. 459 https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825266707 460 Instituto Nacional de Estadística y Geografía (INEGI). (2013b). Continuo de elevaciones mexicano 461 462 v modelos digitales de elevación. INEGI. https://www.inegi.org.mx/app/geo2/elevacionesmex/ 463 464 Instituto Nacional de Estadística y Geografía (INEGI). (2023). Resultados definitivos del censo 2022. INEGI. 465 agropecuario 466 https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2023/CA Def/CA Def2022.p df 467 Instituto Nacional de Estadística y Geografía (INEGI). (2024). Estadísticas a propósito del día 468 469 mundial del agua: desafíos y oportunidades en el uso agrícola en México. INEGI. 470 https://www.inegi.org.mx/app/saladeprensa/noticia.html?id=8942 Intergovernmental Panel on Climate Change (IPCC). (2006). 2006 IPCC Guidelines for National 471 472 Greenhouse Gas Inventories. IPCC. https://www.ipcc-nggip.iges.or.jp/public/2006gl/ Intergovernmental Panel on Climate Change (IPCC). (2022). Climate change 2022: Impacts, 473 474 adaptation and vulnerability. Cambridge University Press. https://doi.org/10.1017/9781009325844 475 Jia, Y., Kuzyakov, Y., Wang, G., Tan, W., Zhu, B., & Feng, X. (2020). Temperature sensitivity of 476 decomposition of soil organic matter fractions increases with their turnover time. Land 477 Degradation and Development, 31(5), 632-645. https://doi.org/10.1002/ldr.3477 478 Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. 479 Science, 304, 1623-1627. https://doi.org/10.1126/science.1097396 480

- 481 Li, J. (2017). Assessing the accuracy of predictive models for numerical data: Not r nor r^2 , why 482 not? Then what?. *PLoS ONE*, *12*(8), e0183250. 483 https://doi.org/10.1371/journal.pone.0183250
- Liu, G., Sun, J., Xie, P., Guo, C., Zhu, K., & Tian, K. (2024a). Climate warming enhances microbial
 network complexity by increasing bacterial diversity and fungal interaction strength in litter
 decomposition. *Science of the Total Environment, 908*, 168444.
 https://doi.org/10.1016/j.scitotenv.2023.168444
- Liu, X., Tian, Y., Heinzle, J., Salas, E., Kwatcho-Kengdo, S., Borken, W., Schindlbacher, A., &
 Wanek, W. (2024b). Long-term soil warming decreases soil microbial necromass carbon by
 adversely affecting its production and decomposition. *Global Change Biology*, 30(6),
 e17379. https://doi.org/10.1111/gcb.17379
- Liu, Z., Zhang, Y., Fa, K., Qin, S., & She, W. (2017). Rainfall pulses modify soil carbon emission
 in a semiarid desert. *Catena*, 155, 147-155. https://doi.org/10.1016/j.catena.2017.03.011
- Luković, J., Burić, D., Mihajlović, J., & Pejović, M. (2024). Spatial and temporal variations of
 aridity-humidity indices in Montenegro. *Theoretical and Applied Climatology*, 155(6), 45534566. https://doi.org/10.1007/s00704-024-04893-y
- Meena, R. S., Singh, A. K., Jatav, S. S., Rai, S., Pradhan, G., Kumar, S., Mina, K. K., & Jhariya,
 M. K. (2024). Significance of soil organic carbon for regenerative agriculture and ecosystem
 services. In K. Singh, M. C. Ribeiro, & Ö. Calicioglu (Eds.), *Biodiversity and Bioeconomy*(pp. 217-240). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-95482-2.000109
- Mendoza, J., Karltun, E., & Olsson, M. (2003). Estimations of amounts of soil organic carbon and
 fine root carbon in land use and land cover classes, and soil types of Chiapas highlands,
 Mexico. *Forest Ecology and Management*, 177(1-3), 191-206.
 https://doi.org/10.1016/S0378-1127(02)00439-5
- Monterroso-Rivas, A. I., Conde-Álvarez, A. C., Pérez-Damian, J. L., López-Blanco, J., GaytanDimas, M., & Gómez-Díaz, J. D. (2018). Multi-temporal assessment of vulnerability to
 climate change: insights from the agricultural sector in Mexico. *Climatic Change*, 147(3-4),
 457-473. https://doi.org/10.1007/s10584-018-2157-7

- Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). *Introduction to linear regression analysis*.
 John Wiley & Sons, Inc.
- Mu, Y., Ye, R., Xiong, K., Li, Y., Liu, Z., Long, Y., Cai, L., & Zhou, Q. (2024). Response of soil
 organic carbon to land-use change after farmland abandonment in the karst desertification
 control. *Plant and Soil*, *501*, 595-610. https://doi.org/10.1007/s11104-024-06541-w
- Mundada, S., Jain, P., & Kumar, N. (2024). Prediction of soil organic carbon using machine
 learning techniques and geospatial data for sustainable agriculture. *Journal of Intelligent & Fuzzy Systems*, 1-14. https://doi.org/10.3233/JIFS-240493
- Naba, C., Ishidaira, H., Magome, J., & Souma, K. (2024). Exploring the potential of soil and water
 conservation measures for climate resilience in Burkina Faso. *Sustainability*, *16*(18), 7995.
 https://doi.org/10.3390/su16187995
- Page, K. L., Dang, Y. P., & Dalal, R. C. (2020). The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. *Frontiers in Sustainable Food Systems*, 4(31), 1-17. https://doi.org/10.3389/fsufs.2020.00031
- 525Paz, F., Covaleda, S., Hidalgo, C., Etchevers, J., & Matus, F. (2016). Modelación simple y operativa526de la distribución del carbono orgánico por fracciones físicas en los suelos. Terra527Latinoamericana,34(3),321-337.
- 528 https://www.terralatinoamericana.org.mx/index.php/terra/article/view/152
- Paz, F., & Etchevers, J. (2016). Distribución a profundidad del carbono orgánico en los suelos de
 México. *Terra Latinoamericana*, 34(3), 339-355.
 https://www.terralatinoamericana.org.mx/index.php/%20terra/article/view/153/132
- Poeplau, C., & Dechow, R. (2023). The legacy of one hundred years of climate change for organic
 carbon stocks in global agricultural topsoils. *Scientific Reports*, 13(1), 7483.
 https://doi.org/10.1038/s41598-023-34753-0
- 535 Posit team. (2023). *RStudio: Integrated Development Environment for R* [Software].
 536 http://www.posit.co/

- Qiu, L., Zhu, J., Zhu, Y., Hong, Y., Wang, K., & Deng, J. (2013). Land use changes induced soil
 organic carbon variations in agricultural soils of Fuyang County, China. *Journal of Soils and Sediments*, *13*(6), 981-988. https://doi.org/10.1007/s11368-013-0684-4
- Rashiq, A., Kumar, V., & Prakash, O. (2024). A spatiotemporal assessment of the precipitation
 variability and pattern, and an evaluation of the predictive reliability, of global climate
 models over Bihar. *Hydrology*, *11*(4), 50. https://doi.org/10.3390/hydrology11040050
- 543 Secretaría de Medio Ambiente y Recursos Naturales-Instituto Nacional de Ecología y Cambio
 544 Climático (SEMARNAT-INECC). (2018). Sexta Comunicación Nacional y Segundo Informe
 545 Bienal de Actualización ante la Convención Marco de las Naciones Unidas sobre el Cambio
 546 climático. SEMARNAT-INECC.
- 547 https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/69287541_
- 548 Mexico-BUR2-NC6-2-MEX_6aNC_Revisada.pdf
- Shang, C., & Tiessen, H. (2003). Soil organic C sequestration and stabilization in karstic soils of
 Yucatan. *Biogeochemistry*, 62(2), 177-196. https://doi.org/10.1023/A:1021123728639
- Servicio de Información Agroalimentaria y Pesquera (SIAP). (2023). Anuario estadístico de la producción agrícola. SIAP. https://nube.siap.gob.mx/cierreagricola/
- Smith, P., & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate
 change in agriculture. *Journal of Agricultural Science*, 148(5), 543-552.
 https://doi.org/10.1017/S0021859610000341
- Stolbovoy, V. S., & Fil, P. P. (2023). Assessment of the carbon content in agricultural soils of the
 European Russia for climate projects. *Izvestiâ Rossijskoj Akademii Nauk. Seriâ GeografičEskaâ*, 87(4), 568-583. https://doi.org/10.31857/S2587556623040143
- Vannier, C., Cochrane, T. A., Reza, P. Z., & Bellamy, L. (2022). An analysis of agricultural systems
 modelling approaches and examples to support future policy development under disruptive
 changes in New Zealand. *Applied Sciences*, 12(5), 2746.
 https://doi.org/10.3390/app12052746
- Wang, S., Zhang, X., Adhikari, K., Wang, Z., Shi, D., Jin, X., & Qian, F. (2023). Impact of future
 climate warming on soil organic carbon stocks in Inner Mongolia, China. *Ecological Indicators*, *156*, 111208. https://doi.org/10.1016/j.ecolind.2023.111208

Wang, X., Chen, F., Zeng, J., Wang, Z., Feng, Y., Wang, X., Ren, C., Yang, G., Zhong, Z., & Han,
X. (2025). Divergent responses of soil glomalin and microbial necromass to precipitation
reduction: New perspectives from soil aggregates and multi-trophic networks. *Soil Biology and Biochemistry*, 200, 109638. https://doi.org/10.1016/j.soilbio.2024.109638

570 Wheeler, T., & von Braun, J. (2013). Climate change impacts on global food security. *Science*,
571 341(6145), 508-513. https://doi.org/10.1126/science.1239402

- Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van 572 Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., & 573 574 Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review various Geoderma, 575 of drivers and indicators at scales. 333. 149-162. https://doi.org/10.1016/j.geoderma.2018.07.026 576
- 577 WorldClim. (2024, January 23). WorldClim Global Climate Data. https://worldclim.org/
- Zayani, H., Fouad, Y., Michot, D., Kassouk, Z., Baghdadi, N., Vaudour, E., Lili-Chabaane, Z., &
 Walter, C. (2023). Using machine-learning algorithms to predict soil organic carbon content
 from combined remote sensing imagery and laboratory Vis-NIR spectral datasets. *Remote Sensing*, 15(17), 4264. https://doi.org/10.3390/rs15174264
- Zhao, F., Wu, Y., Hui, J., Sivakumar, B., Meng, X., & Liu, S. (2021). Projected soil organic carbon
 loss in response to climate warming and soil water content in a loess watershed. *Carbon Balance and Management*, 16(1), 24. https://doi.org/10.1186/s13021-021-00187-2
- Zsolt, S., Tállai, M., Kincses, I., László, Z., Kátai, J., & Vágó, I. (2020). Effect of various soil
 cultivation methods on some microbial soil properties. *DRC Sustainable Future: Journal of Environment, Agriculture, and Energy, 1*(1), 14-20.