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Abstract

Soil organic carbon (SOC) plays a key role in ecosystem health, influencing soil’s physical, chemical, and microbiological 
properties, such as water retention, fertility, and microbiome diversity. SOC modeling, using machine learning and remote 
sensing, enables the prediction of how agricultural practices and climate change affect its storage. This study aimed to model 
and project variations in SOC reserves in rainfed and irrigated agricultural soils in Mexico, under current conditions and future 
climate change scenarios. Therefore, models were developed to relate SOC to variables such as Lang’s index (precipitation and 
temperature), altitude, slope, bulk density, texture type, and soil depth. These models captured the land relief characteristics 
and their relationship with agricultural practices and SOC content in soils. The highest SOC levels were observed in irrigated 
agricultural systems. However, under climate change scenarios, SOC losses of up to 7 % are projected, along with temperature 
increases of up to 6 °C and precipitation increases of 12%. The reduction in SOC could increase greenhouse gas emissions and 
diminish the soil’s carbon storage capacity. This study highlights the importance of implementing sustainable management 
practices and promoting multidisciplinary research to mitigate adverse effects. Additionally, it demonstrates the potential for 
simulating SOC behavior and generating models useful for evaluating scenarios and supporting decision-making.
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Introduction

Soil organic carbon (SOC) is essential for agricultural sus-
tainability, and modeling is a crucial tool for understanding 
the carbon cycle in agricultural systems and evaluating 
its impact on environmental sustainability (Dionizio et 
al., 2020). SOC plays a crucial role in soil productivity by 
improving soil structure, enhancing water and nutrient 
retention, and stimulating microbial activity (Meena et al., 
2024). Globally, agriculture has been identified as one of 
the activities with the greatest influence on SOC loss, due 
to intensive practices such as tillage, deforestation, and 
excessive use of chemical fertilizers (Canaza et al., 2023; 
Lal, 2004). Therefore, having accurate predictions of SOC 
dynamics in agricultural soils is crucial for designing man-
agement strategies that help mitigate climate change and 
improve the resilience of agricultural ecosystems (Paz et al., 
2016; Smith & Olesen, 2010).

In recent years, the development of predictive models of 
SOC has become increasingly important due to the need to 
assess the impact of agricultural practices on the soil’s ability 
to sequester carbon (Guo et al., 2023; Mundada et al., 2024). 
These models integrate key variables such as soil texture and 
land use, management practices, and climate conditions,  
and allow the generation of scenarios on carbon storage in 
both the short and long term (Paz et al., 2016). Modeling 
also identifies areas of risk, where carbon stored in the 
soil could be lost more rapidly, which would help prioritize 
conservation interventions on vulnerable agricultural lands 
(Vannier et al., 2022).

Advances in machine learning and remote sensing tech-
niques have improved the accuracy of SOC models (Zayani 
et al., 2023). In particular, tools such as spectral analysis, the 
integration of satellite data, and the application of machine 
learning algorithms (such as random forests and artificial 
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approach resulted in 325 166  spatial units covering the 
entire agricultural area of the country. For constructing  
the database, information was extracted from each 
polygon, and fundamental variables for the analysis were 
assigned. In addition to the agricultural regions, the fol-
lowing variables were considered: SOC, altitude, slope, 
Lang index, soil bulk density, soil profile depth, and soil 
texture classification.

Soil organic carbon

For the baseline period, data reported in Mexico’s First 
Biennial Report (Instituto Nacional de Ecología y Cambio 
Climático-Secretaría de Medio Ambiente y Recursos Natu-
rales [INECC-SEMARNAT], 2015) was used. This report 
included the breakdown of SOC (%) for 2001 and 2016, 
according to the type of vegetation (Table 1). Using this 
information, an SOC map for each year was generated 
using the following equation (1):

SOC = %SOC × BD × SD 			          (1)

where SOC represents soil organic carbon(t⋅ha-1), BD is 
bulk density (t⋅m-3), SD is soil depth (cm), and %SOC is the 
percentage of SOC. A soil depth of 30 cm was assumed 
based on the Intergovernmental Panel on Climate Change 
(IPCC, 2006) guidelines, as microbial activity is most 
active at this depth (Paz & Etchevers, 2016). To determine 
the representative SOC value for the baseline period, the 
average of the values for 2001 and 2016 was calculated.

The SOC values derived were classified into five ranges: 
lower than 40 t⋅ha-1, 40 to 50 t⋅ha-1, 50 to 60 t⋅ha-1, 60 to 
70  t⋅ha-1, and higher than 70  t⋅ha-1. This classification 
allows for a more detailed evaluation of SOC and facilitates 
the interpretation of potential variations in SOC stocks 
under different climate change scenarios.

Independent variables

Six soil and environmental variables were selected to 
model the relationship with SOC:

Lang index. Mean temperature (T, °C) and annual pre-
cipitation (P, mm) data for Mexico were sourced from the 
WorldClim database (2024). To assess the relationship 
between T and P, the Lang index for the years 2001 and 
2016 was calculated using the following equation:

Lang index = 					            (2)

Land slope and altitude. Altitude (m a. s. l.) was sourced 
from the Continuo de Elevaciones Mexicano (CEM) with a 
15 m resolution (INEGI, 2013b). Using this data, the land 
slope map (%) was generated with the ArcMap 10.8.1 tool 
(ESRI, 2020).

neural networks) have been successful in predicting SOC 
changes at different spatial scales (Hateffard et al., 2023). 
These techniques enhance the accuracy of soil carbon con-
tent estimation and facilitate the assessment of the impact 
of climate change and agricultural practices on a global 
scale (Abdoli et al., 2023).

Understanding and modeling the impact of agricultural 
practices on SOC is essential for developing sustainable 
agricultural policies. The aim of this study was to model 
and project variations in SOC stocks in rainfed and irri-
gated agricultural soils in Mexico under current conditions 
and future climate change scenarios. The main hypothesis 
is that future changes in temperature and precipitation will 
cause significant alterations in environmental conditions, 
notably affecting SOC stocks. This study contributes to 
the understanding of carbon storage patterns in Mexican 
soils and emphasizes the importance of integrating physio-
graphic and climate variables into predictive SOC models.

Materials and methods

The projection of COS under different climate change sce-
narios was carried out in two stages: 1) delimitation of agri-
cultural regions and 2) modeling and calculation of COS 
in base period and climate change scenarios.

Delimitation of agricultural regions in Mexico 

The delimitation of agricultural regions in Mexico was 
carried out by integrating the physiography of the territory 
with the main agricultural systems of the country. The 
physiography of Mexico is divided into fifteen provinces 
and mapped at a scale of 1:250 000 (Instituto Nacional de 
Estadística y Geografía [INEGI], 2001). Agricultural sys-
tems were defined based on the land use and vegetation 
map for the year 2016, also at a scale of 1:250 000 (INEGI, 
2021). This map was processed and classified to identify 
agricultural areas, which were further divided into rainfed 
and irrigated systems according to the criteria set by the 
United Nations Convention to Combat Desertification 
(UNCCD), as applied in Mexico by the Comisión Nacional 
de Zonas Áridas-Universidad Autónoma Chapingo 
(CONAZA-UACh, 2023).

To integrate the information, the tool ArcMap 10.8.1 (ESRI, 
2020) was used, and a spatial intersection was applied 
between the physiographic map and the classified agri-
cultural systems map. This procedure generated a layer 
that identified 30 agricultural regions per physiographic 
province and system type (rainfed or irrigated).

Spatial data analysis and processing

To ensure consistency in the generated maps, a regular 
grid composed of 1 000 × 1 000 m polygons was used. This 
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Soil texture class, bulk density, and soil depth. Soil texture, 
bulk density (t⋅m-3), and soil depth (m) were obtained 
from the “Series II: Soil Profile Dataset” at a scale of 
1:250 000 (INEGI, 2013a).

SOC modeling. Models were developed for each of the 
30 agricultural regions. Linear regression models (Equa-
tion 3) and exponential regression models (Equation 4) 
were used, with SOC from the baseline period considered 
as the dependent variable:

SOC = β0 + β1 × Lang index + β2 × altitude + β3 × slope +  
            β4 × BD + β5 × texture class + β6 × soil depht  	       (3)

log(SOC) = β0 + β1 × Lang index + β2 × altitude + β3 × slope +   
                   β4 × BD + β5 × texture class + β6 × soil depth     (4)

The final model for each agricultural region was selected 
based on the statistical significance (P < 0.05) of the 
variables. To identify the best model, the coefficient of 
determination (R²), mean squared error (MSE), and the 
Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) were calculated using RStudio 
2023.06.0 Build 421 (Posit team, 2023).

Model validation

The validation was conducted by comparing the observed 
values from the baseline period with those predicted by the 
models to assess accuracy and reliability. Six statistical tests 
were applied to analyze errors and biases: 1) Root mean 
square error (RMSE) and 2) Mean absolute error (MAE) 
to quantify accuracy, 3) Coefficient of determination (R²) 

Table 1. Bulk density (BD) and soil organic carbon (SOC) per type of vegetation.

Type of vegetation BD (t⋅m-3) SOC (%) 2001 SOC (%) 2016

Annual cropland 1.23 3.07 1.27

Permanent cropland 1.22 4.96 1.85

Water 1.25 2.26 0.85

Settlements 1.22 0.98 1.21

Cultivated forest 1.23 2.90 0.88

Primary coniferous forest 1.17 5.25 3.12

Secondary coniferous forest 1.19 3.38 3.02

Primary oak forest 1.18 2.22 3.2

Secondary oak forest 1.19 1.64 2.79

Primary cloud forest 1.17 6.67 5.03

Secondary cloud forest 1.16 9.63 6.59

Other primary woody types 1.27 1.48 1.23

Other secondary woody types 1.21 4.79 3.49

Other non woody primary types 1.55 1.70 0.3

Primary xerophilous scrub (woody) 1.25 1.12 1.37

Secondary xerophilous scrub (woody) 1.21 1.84 1.82

Primary xerophilous scrub (non-woody) 1.25 1.27 1.03

Secondary xerophilous scrub (non-woody) 1.24 1.8 0.91

Primary dry forest 1.21 2.86 2.35

Secondary dry forest 1.2 2.16 2.3

Primary evergreen forest 1.12 7.95 6.52

Secondary evergreen forest 1.19 4.56 3.94

Primary tropical deciduous forests 1.14 4.13 4.53

Secondary tropical deciduous forests 1.2 1.89 2.35

Primary hydrophytic vegetation (woody) 1.24 8.92 6.41

Primary hydrophytic vegetation (non-woody) 1.23 5.24 1.56

Other lands 1.3 0.93 0.39

Grasslands 1.22 2.78 1.45

Source: adapted from INECC-SEMARNAT (2015).
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to evaluate variability, 4) Mean absolute percentage error 
(MAPE) to provide a relative perspective of the error, 5) 
Lin’s concordance correlation coefficient to measure the 
agreement between predictions and observations, and 6) 
Bias analysis (mean differences) to detect potential sys-
tematic deviations. These analyses were performed using 
RStudio 2023.06.0 Build 421(Posit team, 2023).

Projections under climate change scenarios

To project future scenarios under climate change condi-
tions, the Lang index values from the baseline period 
were replaced with future projections (2081–2100). These 
projections were derived from mean temperatures (°C) 
and annual precipitation (mm) data from the climate 
models HadGEM3-GC31-LL, MIROC6, and MPI-ESM1-
2-HR, based on the Shared Socioeconomic Pathway SSP5-
8.5 (WorldClim, 2024).

Results and discussion

Distribution of agricultural regions in Mexico

In Mexico, 17.4% of the territory is designated for agricul-
tural use (Table 2). Of this area, 68 % is dedicated to rainfed 
agriculture, while 32  % supports irrigated agriculture 
(Figure 1a). Maize and beans are the primary crops grown 
under rainfed conditions (Comisión Nacional del Agua 
[CONAGUA], 2021; INEGI, 2023). In contrast, irrigated 
agriculture is dominated by maize, wheat, sorghum, alfalfa, 
sugarcane, and beans (INEGI, 2024). During the reference 
period, 15 025 424.96 ha were harvested nationwide in the 
agricultural year, with 75% of this area dedicated to rainfed 
agriculture (Servicio de Información Agroalimentaria y 
Pesquera [SIAP], 2023). Maize production under rainfed 
conditions is crucial for most Mexican farmers, empha-
sizing the importance of precipitation for the sustainability 
of rainfed agriculture (Conde et al., 2006).

The Pacific Coastal Plain allocates 54 % of its land area 
to irrigated agriculture. This region includes the states of 

Sinaloa and Nayarit and extends to the south, including 
parts of Jalisco and Colima. It is characterized by its flat 
terrain and proximity to the Pacific Ocean. In contrast, 
the Trans-Mexican Volcanic Belt dedicates 36 % of its land 
area to rainfed agriculture and primarily encompasses the 
states of Jalisco, Michoacán, Estado de México, Puebla, and 
Veracruz.

Organic carbon stored in agricultural systems

The analysis of SOC in agricultural systems revealed that 
values exceeding 70 t⋅ha-1 account for 37 % of the Mexican 
agricultural land. Ranges between 50  to 60  and 60  to 
70  t⋅ha-1  cover 13  % and 14  % of the agricultural area, 
respectively, and are predominant in the Pacific Coastal 
Plain. Values ranging from 40  to 50  t⋅ha-1 are primarily 
concentrated in the central region of the country, specifi-
cally in the Trans-Mexican Volcanic Belt, covering 35 % of 
the agricultural area. Values below 40 t⋅ha-1 have a limited 
distribution, covering only 1  % of the agricultural land 
(Figure 1b). 

The highest SOC values were recorded in the Yucatán 
Peninsula for both types of agriculture: 116  t⋅ha-1  in 
rainfed crops and 112  t⋅ha-1  in irrigated systems. Fol-
lowed by Sierras de Chiapas, with 84 t⋅ha-1 for rainfed and 
81 t⋅ha-1 for irrigation (Figure 2). The southern region of 
the country is distinguished by its remarkable crop diver-
sity (INEGI, 2007). For example, in the Yucatan Peninsula, 
milpa systems store up to 58.39 t⋅ha-1 of SOC (Flores-Del-
gadillo et al., 2011; González-Molina et al., 2008; Shangl & 
Tiessen, 2003), while in the Sierra de Chiapas and Guate-
mala, milpa, maize, coffee, and agroforestry systems have 
been documented to store up to 90.8 t⋅ha-1 (de Jong et al., 
1999; Flores-Delgadillo et al., 2011; Mendoza et al., 2003).

SOC projections under future climate change scenarios

Out of the 30 agricultural regions evaluated, models were 
developed for 27  agricultural regions, as three regions 
lacked sufficient data to construct them. According to basic 

Figure 1. a) Distribution of agriculture in Mexico and b) soil organic carbon (SOC) content in the baseline period.

Agriculture type
        Irrigation
        Rainfed
        Other Land Cover Types

SOC
        <40
        40 - 50
        50 - 60
        60 - 70
        >70

a) b)
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modeling criteria, at least three data points are required to 
establish a relationship between variables and achieve a 
basic statistical fit (Montgomery et al., 2021). For each of 
the 27 regions, linear and exponential models were com-
pared, resulting in a total of 54 models (27 of each type).

The models developed showed reasonable accuracy in 
predicting SOC, although they did exhibit expected errors. 
The statistical indicators indicated that, despite some 
limitations, the results are sufficiently reliable for inter-
preting SOC content trends. RMSE value implies that, on 
average, the model predictions differ by 23 units from the 
observed values. The MAE shows that the mean absolute 

error in the predictions is around 17  units. The MAPE 
indicates that predictions deviate by approximately 26  % 
from the observed values. R² explains about 25 % of the 
SOC variability, suggesting that a significant portion of  
the variability is not captured by the models, while a bias 
of -0.61 indicates a slight underestimation of SOC content 
by the models. Lastly, Lin’s concordance index of 0.685, with 
a narrow confidence interval (0.409 to 0.420), suggests mod-
erate agreement between predicted and observed values.

The low R² value reflects the influence of factors affecting 
SOC dynamics that are not currently accounted for in the 
models. While a low R² does not invalidate the models, it 

Table 2. Agricultural regions and land area.

Agriculture Physiographic province Area (ha)

Irrigation Pacific Coastal Plain 1 683 000

Baja California Peninsula 292 200

Mexican Plateau 621 100

Southern Gulf Coastal Plain 188 200

Sonoran plains 700 300

Sierra Madre Occidental 757 700

Northern Gulf Coastal Plain 1 014 100

Yucatán Peninsula 207 900

Sierra Madre del Sur 698 200

Sierras de Chiapas and Guatemala 75 000

Sierra Madre Oriental 410 600

Central American Cordillera 79 200

The Great Plains 267 800

Northern Sierras and Plains 1 211 400

Trans-Mexican Volcanic Belt 2 355 300

Rainfed Sierra Madre Occidental 2 949 500

Mexican Plateau 2 017 200

Northern Gulf Coastal Plain 2 095 800

Baja California Peninsula 101 900

Sonoran plains 38 800

Pacific Coastal Plain 348 300

Sierra Madre del Sur 2 571 000

Trans-Mexican Volcanic Belt 5 526 000

Central American Cordillera 656 600

Sierras de Chiapas and Guatemala 934 700

The Great Plains 259 500

Sierra Madre Oriental 1 783 600

Northern Sierras and Plains 155 200

Southern Gulf Coastal Plain 1 742 500

Yucatán Peninsula 778 900

Agricultural area 32 521 500

Total land area 187 079 200

Note: The Mexican coastal area and uncharted insular territory were not included in the total land area.
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highlights the need to integrate them with other relevant 
factors. For example, soil management practices such as 
crop rotation, vegetative cover, and fertilization, as well as 
land-use changes like the conversion of agricultural land 
to urban areas, have been shown to significantly impact 
SOC levels (Qiu et al., 2013). Additionally, soil erosion can 
diminish the soil’s capacity to store carbon (Gómez et al., 
2020), and microbial activity –driven by climatic factors, 
nutrient availability, and soil type– may not be adequately 
represented in the current modeling approach (Zsolt et 
al., 2020).

The effectiveness of the models, despite their limitations, 
is further supported by complementary metrics such as 
MAE (Li, 2017). For instance, in India, MAE values of up 
to 52 and RMSE values reaching 130 were reported for 
various predicted climate models (Rashiq et al., 2024). 
Similarly, in Iran, models predicting SOC content in agri-
cultural soils amended with calcareous materials yielded 
MAE and RMSE values of 0.0056 and 0.62 % of the actual 
measurements, respectively (Abdoli et al., 2023).

Figure 3 shows the predicted changes in the Lang index, 
highlighting a potentially significant impact on SOC 
reserves in Mexico. Projections indicate a decline in the 
index across northern and central regions of the country, 
associated with rising temperatures and decreasing precip-
itation. These variations directly influence the processes 
of organic matter decomposition and, consequently, the 
dynamics of SOC (Chen et al., 2020; Jia et al., 2020).

Future climate scenarios indicate a general trend toward 
increasingly unfavorable conditions for carbon accumula-

tion across most of Mexico. Regions with a declining Lang 
index often exhibit reductions in SOC, suggesting that 
rising temperatures and potential decreases in moisture 
may accelerate soil degradation and the release of stored 
carbon (Luković et al., 2024; Wiesmeier et al., 2019). This 
underscores the importance of utilizing multiple climate 
models to assess soil vulnerability and to develop adaptive 
strategies aimed at mitigating impacts on both agricultural 
and natural systems.

With temperature increases of up to 6 °C, models predict a 
7 % reduction in SOC for irrigated agriculture systems and 
a 6 % reduction for rainfed agriculture systems (Figure 4). 
Despite these negative trends, precipitation is projected 
to rise by 12 % in irrigated agriculture areas and decline 
by 12 % in rainfed agriculture areas. High temperatures 
may accelerate the decomposition of organic matter and 
reduce SOC reserves by promoting microbial activity  
and thus enzyme activity (Liu et al., 2024a; Liu et al., 2024b).

On the other hand, variations in precipitation directly 
influence soil moisture levels, a key factor in the decom-
position process and microbial respiration rates. When 
precipitation increases, as in irrigated areas, soil moisture 
levels also increase, which favors greater SOC mineral-
ization due to intensified microbial activity (Zhao et al., 
2021). However, excess moisture can generate anaerobic 
conditions and promote the release of greenhouse gases 
such as methane (da Cunha-Santino & Bianchini, 2023). 
In contrast, decreased precipitation in rainfed areas can 
limit microbial activity by reducing soil moisture, thereby 
decreasing SOC respiration and decomposition rates 
(Liu et al., 2017). The complex interaction between tem-

Figure 2. Spatial distribution of soil organic carbon content per type of agriculture and physiographic province.
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Figure 3. Projections changes in the Lang Index and soil organic carbon (SOC) in agricultural areas.

perature, precipitation, moisture, and microbial activity is 
critical for understanding how future climate conditions 
could modify SOC stability (Wang et al., 2025).

A global analysis suggests that agricultural soils have lost 
an average of 2.5  to 3.9 % of SOC since 1919, which is 
attributed to changes in climate conditions (Poeplau & 
Dechow, 2023). For example, in China, a 4  °C increase 
was reported to cause a 17 % decrease in SOC stocks in 
agricultural soils (Wang et al., 2023).

This study focuses exclusively on the impact of tem-
perature and precipitation variation; however, in Mexico, 

13 300  Gt of carbon have been lost in cropland from 
1990  to 2015  (SEMARNAT-INECC, 2018). In addition, 
agricultural practices have reduced SOC stocks on arable 
land by 21 %, highlighting the influence of land manage-
ment on SOC dynamics (Stolbovoy & Fil, 2023).

It is important to note that variations in temperature and 
precipitation directly impact crop development and yields 
by increasing their vulnerability against adverse conditions 
(IPCC, 2022; Wheeler & von Braun, 2013). Arce-Romero 
et al. (2020) and Monterroso-Rivas et al. (2018) note that 
crops such as beans and wheat could experience reduc-
tions of up to 40 % in some regions of Mexico due to cli-
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mate change. These potential losses represent a significant 
challenge for food security and agricultural sustainability 
(Food and Agriculture Organization of the United Nations 
[FAO], 2020).

Implementing sustainable land management practices has 
great potential to recover SOC reserves. This increase not 
only improves soil fertility, but also stabilizes crop yields 
(Page et al., 2020). Techniques such as soil and water 
conservation, composting, and crop rotation increase soil 
organic matter, improve soil structure and water retention, 
and help counteract the adverse effects of climate change 
(Frelih-Larsen et al., 2022; Mu et al., 2024). It has also 
been noted that the adoption of agroforestry systems and 
restoration of degraded lands can reverse SOC losses  
and contribute to climate resilience. These interventions 
are key to sequestering additional carbon in soil and gener-
ating long-term benefits for agricultural sustainability and 
climate change mitigation (Naba et al., 2024).

Conclusions

The study was able to model and project variations in SOC 
reserves in agricultural soils in Mexico under different 
climate scenarios. The results obtained provide valuable 
information for decision making in soil management. 
Although no specific areas of risk were identified, the find-
ings may be useful for guiding conservation interventions.

Climate change, due to increased temperature and precipi-
tation variability, will negatively affect SOC reserves. Both 
irrigated and rainfed soils could experience significant 
carbon loss, which could increase greenhouse gas emis-
sions and reduce soil carbon storage capacity.

The projections generated allow us to anticipate the 
behavior of SOC, although they present an inherent 
margin of uncertainty. Although the models included 

climate and edaphic factors, it is important to consider 
that other variables, such as agricultural practices, also 
influence the results.

Although no high-risk areas were identified, the results 
can help prioritize conservation actions in vulnerable agri-
cultural soils. These findings provide a basis for designing 
policies and practices to mitigate the effects of climate 
change.

The study highlights the need to adopt sustainable agricul-
tural practices to preserve soil carbon. Projections indicate 
a loss of SOC in future scenarios, which underlines the 
importance of implementing conservation measures to 
mitigate the effects of climate change on agriculture.

Finally, to make the model more consistent, it is suggested 
to include more explanatory variables, such as microbial 
activity and agricultural practices, as well as to apply 
nonlinear models to better capture interactions between 
variables, use higher temporal and spatial resolution data, 
perform cross-validation, and optimize parameters to 
improve accuracy and reduce uncertainty.
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