Revista Chapingo Serie Zonas Áridas
Climate change effects on thermal requirements and number of broods of whitefly (Bemicia tabaci) in the north-central region of Mexico
ISSNe: 2007-526X
PDF

Keywords

Pepper
Capsicum annuum
hourly temperatures
pests
RCP

How to Cite

Ramírez-Cabral, N., Mena-Covarrubias, J., Medina-García, G., & Ruiz-Corral, J. A. (2022). Climate change effects on thermal requirements and number of broods of whitefly (Bemicia tabaci) in the north-central region of Mexico. Revista Chapingo Serie Zonas Áridas, 20(2), e202104002. https://doi.org/10.5154/r.rchsza.2021.04.002

Abstract

Capsicum annuum L. pepper is an economically important crop in Mexico. Bemisia tabaci whitefly is a pest that attacks this crop. Whitefly can transmit more than 200 viruses and cause severe losses to pepper crops. The objective of this research was to know the possible effect of climate change on thermal requirements and the number of broods of B. tabaci in the north-central region of Mexico. The number of hours at which the temperature was inside and outside of the optimal ranges (as defined by the cardinal temperatures), and the number of generations were estimated. Maps of the current climate scenario were generated (1981-2010) and for the periods 2030, 2050, and 2070 for RCP 4.5 and 8.5. A favorable effect of climate change is observed in future climate scenarios in the north-central region of Mexico, as well as in the increase of the number of broods in the growing pepper season (April-October); this could decrease the yield of the crop due to the negative effect of this pest. This pest is expected to spread to regions where increased temperatures eliminate frost, allowing populations of this pest throughout the year.

https://doi.org/10.5154/r.rchsza.2021.04.002
PDF

References

Ahn, K. S., Lee, K. Y., Choi, M. H., Kim, J. W., y Kim, G. H. (2001). Effect of temperature and host plant on development and reproduction of the sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Korean Journal of Applied Entomology 40: 203-209. http://www.entomology2.or.kr/journal/article.php?code=10746

Awadalla, S. S., Bayoumy, M. H., Khattab, M. A., y Abdel-Wahab, A. H. (2014). Thermal Requirements for Development of Bemisia tabaci (Hemiptera: Aleyrodidae) Biotype ‘B’ and Their Implication to Field Sample Population Data. Acta Phytopathologica et Entomologica Hungarica. 49. 287-302. https://doi.org/10.1556/APhyt.49.2014.2.16

Bale, J. S., Masters, G., Hodkinson, I., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M., Symrnioudis, I., Watt A. D., y Whittaker, J. B. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol. 8(1):1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x

Bonato, O., Lurette, A., Vidal, C., y Fargues, B J. (2007). Modelling temperature‐dependent bionomics of Bemisia tabaci (Q‐biotype). Physiological Entomology, 32: 50-55. DOI: https://doi.org/10.1111/j.1365-3032.2006.00540.x.

Brown, J. K. (2010). Phylogenetic biology of the Bemisia tabaci sibling species group. En: “Bemisia: Bionomics and Management of a Global Pest”, Eds. P.A. Stansly & S.E. Naranjo, Springer (London-New York), pp:31-67.

Brown, J. K., y Bird, J. (1992). Whitefly-transmitted geminiviruses and associated disorders in Americas and the Caribbean Basin. Plant Dis. 76: 220-225. http://dx.doi.org/10.1094/PD-76-0220

Butler, G. D., Henneberry, T. J., y Hutchison, W. D. (1986). Biology, sampling and population dynamics of Bemisia tabaci. In Agricultural Zoology Reviews, ed. GE Russell, pp. 167–195. Andover, Hants: Intercept Ltd.

Byrne, D. N., y Bellows T. S. (1991). Whitefly biology. Annual Review of Entomology, 36(1): 431-457. https://doi.org/10.1146/annurev.en.36.010191.002243

Cui, X., Wan, F., Xie, M., y Liu, T. (2008). Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. 10 pp. Journal of Insect Science 8:24. https://doi.org/10.1673/031.008.2401

Denlinger, D. L., y Yocum, G. D. (1998). Physiology of heat sensitivity. In: Hallman, G. J., Denlinger, D. L., editors. Thermal sensitivity in insects and application in integrated pest management 11–18. Westview Press, Boulder, Colorado, USA.

FAO. (2021). Statistic. FAOSTAT. Food and Agriculture Data. Consultado en línea: Febrero 2021. http://www.fao.org/faostat/en/#home

Fritz, J. O., Vanderlip, R. L., Heiniger, R. W., y Abelhalim, A. Z. (1997). Simulating forage sorghum yields with SORKAM. Agron. J. 89:64-68.

IPCC (Intergovernmental Panel on Climate Change). (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)]. IPCC, Geneva, Switzerland, 151 pp. https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_Front_matters.pdf

Kriticos, D. J., De Barro, P. J., Yonow, T., Ota, N., y Sutherst, R. W. (2020). The potential geographical distribution and phenology of Bemisia tabaci Middle East/Asia Minor 1, considering irrigation and glasshouse production. Bulletin of Entomological Research 110, 567–576. https://doi.org/10.1017/S0007485320000061.

Kiritani, K. (2006). Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Population Ecology 48(1): 5-12. http://dx.doi.org/10.1007/s10144-005-0225-0

Madhavi, R. K., Shivashankara, K. S., Geetha, G. A., y Pavithra, K. C. (2016). Capsicum (hot pepper and bell pepper). In: Srinivasa N. K.; Shivashankara K. S. y Laxman R. H. (Eds.) Abiotic stress physiology of horticultural crops. Springer India. 151-166 pp

Matsumura, M., Tokuda, M., Endo, N., Ohata, S., y Kamitani, S. (2005). Distribution and abundance of the maize orange leafhopper Cicadulina bipunctata (Homoptera: Cicadellidae) in Kikuchi, Kumamoto, Japan in 2004. Kyushu Plant Prot. Res. 51:36-40.

Medina G., G., Mena C., J., Reveles H., M., Echavarría Ch., F. G., y Ruiz C., J. A. (2017). Cambio climático y sus efectos en el potencial productivo de chile en el norte centro de México. Centro de Investigación Regional Norte Centro. Campo Experimental Zacatecas. Calera de V. R., Zacatecas. Folleto técnico No. 88. 43 pp.

Medina-García, G., Grageda-Grageda, J., Ruiz-Corral, J. A., CasasFlores, J. I., Rodríguez-Moreno, V. M., y de la MoraOrozco, C. (2019). Disminución de las horas frío como efecto del cambio climático en México. Rev Mex Cienc Agríc 10:1325-1337. https://doi.org/10.29312/remexca.v10i6.1688

Mongkolporn, O., y Taylor P., W. J. (2011). Capsicum. In: Kole C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20450-0_4

Morimoto, N., Imura, O., y Kiura, T. (1998). Potential effects of global warming on the occurrence of Japanese pest insects. Appl. Entomol. Zool. 33(1):147-155. [CAB Abstracts]

Muñoz-Valencia, V., Díaz-González, F., Manzano-Martínez, M. del R., Toro-Perea, N., y Cárdenas-Hena, H. (2013). Basal and induced thermotolerance to heat shocks in Bemisia tabaci biotype B (Hemiptera: Aleyrodidae). Revista Colombiana de Entomología 39 (1): 18-25

Naranjo, S.E., Castle, S. J., De Barro, P. J., y Liu, S. S. (2009). Population dynamics, demography, dispersal and spread of Bemisia tabaci. In: Bemisia: bionomics and management of a global pest. Springer, pp 185–226. http://dx.doi.org/10.1007/978-90-481-2460-2_6

Ortega A., L. D., y Carapia R., U. E. (2020). Moscas blancas (Hemiptera: Aleyrodidae) en México: estatus, especies, distribución e importancia. Dugesiana 27(1): 37-54. https://doi.org/10.32870/dugesiana.v27i1.7095

Parmesan, C. (2007). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecology, Evolution, and Systematics. 37:637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

Perring, T. M. (2001). The Bemisia tabaci species complex. Crop Protection, 20:725-737. http://dx.doi.org/10.1016/S0261-2194(01)00109-0

Porter, J. H., Parry, M. L., y Carter, T. R. (1991). The potential effects of climatic change on agriculture insect pests. Agriculture and Forest Meteorology. 57: 221–240. http://dx.doi.org/10.1016/0168-1923(91)90088-8

Ramírez-Cabral, N., Medina-García, G., y Kumar, L. (2020). Increase of the number of broods of Fall Armyworm (Spodoptera frugiperda) as an indicator of global warming. Revista Chapingo Serie Zonas Áridas, 19(1), 1-16. https://doi.org/10.5154/r.rchsza.2020.11.01

Ramos, R. S., Kumar, L., Shabani, F., y Picanco, M. C. (2018). Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates. PLoS ONE 13(6): e0198925. https://doi.org/10.1371/journal.pone.0198925

Ruiz-Corral, J. A., Medina-García, G., Rodríguez-Moreno, V. M., Sánchez-González, J. J., Villavicencio G. R., Durán P., N., Grageda G., J., y García R., J. E. (2016). Regionalización del cambio climático en México. Rev. Mex. de Cienc. Agríc. Pub. Esp. Núm. 13:2451-2464. https://doi.org/10.29312/remexca.v0i13.460

Salvucci, M. E. (2000). Sorbitol accumulation in whiteflies: evidence for a role in protecting proteins during heat stress. J. Therm. Biol. 25:353–361. http://dx.doi.org/10.1016/S0306-4565(99)00107-2

Sani, I., Ismail, S. I., Abdullah, S., Jalinas, J., Jamian, S., y Saad, N. (2020). A Review of the Biology and Control of Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with Special Reference to Biological Control Using Entomopathogenic Fungi. Insects. 11, 619; https://doi.org/10.3390/insects11090619

SIACON (Sistema de Información Agropecuaria de Consulta) 1980-2019. SADER. SIAP (2020). https://www.gob.mx/siap/documentos/siacon-ng-161430.

Snyder, R. L. (1985). Hand calculating degree-days. Agric. For. Meteorol. 35:353-358. https://doi.org/10.1016/0168-1923(85)90095-4

Thakur, H., Jindal, S. K., Sharma, A., y Dhaliwal, M. S. (2018). Chilli leaf curl virus disease: a serious threat for chilli cultivation. Journal of Plant Diseases and Protection. 125, 239–249. https://doi.org/10.1007/s41348-018-0146-8

Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., y Masui, T. (2011). The representative concentration pathways: an overview. Climatic change 109(1):5-31. http://link.springer.com/article/10.1007%25252Fs10584-011-0148-z

Walton, D., Meyerson, J., y Neelin, J. D. (2013). Accessing, Downloading, and Viewing CMIP5 Data. Earth System Grid Federation. pp. 25.

Wolfe, G. R., Hendrix, D. L., y Salvucci, M. E. (1998). A thermoprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii. J. Insect Physiol. 44:597–603. http://dx.doi.org/10.1016/S0022-1910(98)00035-3

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Revista Chapingo Serie Zonas Áridas