Revista Chapingo Serie Zonas Áridas
Zinc biodisponible en suelo para la nutrición del nogal pecanero
ISSNe: 2007-526X
PDF

Palabras clave

Carya illinoensis
metales traza
pH
carbonatos
materia orgánica

Cómo citar

Madrigal-Soteno, N. . A. . ., Ojeda-Barrios, D. . L., Guerrero-Prieto, V. . M. ., Ávila-Quezada, G., & Parra-Quezada, R. (2016). Zinc biodisponible en suelo para la nutrición del nogal pecanero. Revista Chapingo Serie Zonas Áridas, 15(1), 1–7. https://doi.org/10.5154/r.rchsza.2014.05.003

Resumen

El nogal pecanero es uno de los frutales más cultivados a nivel nacional por su alta rentabilidad. Este frutal tiene necesidades importantes de zinc (Zn), el cual se ubica como uno de los micronutrientes más requeridos por este cultivo. Los principales efectos del Zn en el metabolismo de la planta se observan en la síntesis de clorofila y triptófano. También está involucrado en la actividad de enzimas relacionadas con la detoxificación de las especies reactivas de oxígeno. La deficiencia de este nutriente se relaciona con el tipo de suelo. Con el objetivo de conocer los factores que inf luyen en la biodisponibilidad del Zn en el suelo para la nutrición del nogal pecanero se presenta la siguiente revisión. Se concluye que la deficiencia de Zn en las huertas de nogal es más común en periodos fríos, primaveras húmedas, y suelos arenosos con bajo contenido de materia orgánica, pH alcalino y altos contenidos de carbonatos. Esta deficiencia ocasiona un escaso desarrollo radical.

https://doi.org/10.5154/r.rchsza.2014.05.003
PDF

Citas

Alloway, B., J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

Armienta O., Cruz, A. Aguayo, N., & Ceniceros. (2009). “Geochemical distribution of arsenic, cadmium, lead and zinc in river sediments affected by tailings in Zimapan, a historical polymetalic mining zone of México. Environ. Geol. 58: 1467 - 1477.

Basta N. T., Ryan, J. A., & Chaney, R. L. (2005). Trace element chemistry in residual–treated soil: Key concepts and metal bioavailability. J. Environ. Qual. 34: 49–63

Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ. Pollut. 127: 73-82.

Biling, W. A. N. G., Zhengmiao, X. I. E., Jianjun, C. H. E. N., Jiang, J., & Qiufeng, S. U. (2008). Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassicachinensis L.) in a mining tailing contaminated soil. J. Environ. Sci. 20, 1109-1117.

Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173(4), 677-702.Calderín, A. (2007). Material de origen natural que retiene cationes de metales pesados. Revista Iberoamericana de Polímeros 8 (3): 204-213.

Catlett, K. M., Heil, D. M., Lindsay, W. L., & Ebinger, M. H. (2002). Soil chemical properties controlling zinc 2+ activity in 18 Colorado soils. Soil Sci. Soc. Am J. 66:1182–1189

Cattani, I., Fragoulis, G., Bocelli, R., & Capri, E. (2006). Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils. Chemosphere. 64:1972-1979.

Chagué-Goff, C. (2005). Assessing the removal efficiency of Zn, Cu, Fe and Pb in a treatment wetland using selective sequential extraction: a case study. Water Air Soil Pollution 160: 161-179.

Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007). Competitive sorption and desorption of heavy metals by individuals soil components. J. Hazard. Mat. 140: 308–315.

De las Heras J., Mañas P., & Labrador J. (2005). Effects of several applications of digested sewage sludge on soils and plants. J. Environ. Sci. Health Part A 40, 437–451.

Di Baccio, D., Kopriva, S., Sebastiani, L., & Rennenberg, H. (2005). Does glutathione metabolism have a role in the defence of poplar against zinc excess?. New Phytologist, 167(1), 73-80

Degryse F., Verma V. K., & Smolders E. (2008). Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin-buffered solutions and in soil. Plant Soil 306:69–84

Dessureault-Rompré J., Nowack B., Schulin R., & Luster J. (2007). Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L. Plant Soil 301:123–134

Gao X., Zhang F., & Hoff land E. (2009). Malate exudation by six aerobic rice genotypes varying in zinc uptake efficiency. J Environ Qual 38:2315–2321

Hacisalihoglu, G., & Kochian, L. V. (2003). How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New phytologist, 159(2), 341-350.

Hafeez, B., Khanif, M., & Saleem, M. (2013). Role of zinc in plant nutrition-a review. American Journal of Experimental Agriculture, 3(2), 374-391.

Haydon, M. J., & Cobbett, C. S. (2007). Transporters of ligands for essential metal ions in plants. New Phytol. 174: 499– 506.

Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

Hoff land, E., Wei, C., & Wissuwa, M. (2006). Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283:155–162

Jain, N., Bhargava, A., Tarafdar, J. C., Singh, S. K., & Panwar, J. (2013). A biomimetic approach towards synthesis of zinc oxide nanoparticles. Applied microbiology and biotechnology, 97(2), 859-869.

Jaitz, L., Mueller, B., Koellensperger, G., Huber, D., Oburger, E., Puschenreiter, M., & Hann, S. (2011). LC-MS analysis of low molecular weight organic acids derived from root exudation. Anal Bioanal Chem 400:2587–2596

Kabata-Pendias, A., & Pendias, H. (2010). Trace Metals in Soils and Plants. 3rd edition. CRC Press. Kabata-Pendias, A. (2004). Soil-plant transfer of trace elements: an environmental issue. Geoderma 122: 143-149.

Luster, J., Göttlein, A., Nowack, B., & Sarret, G. (2009). Sampling, defining, characterising and modeling the rhizosphere-the soil science tool box. Plant Soil 321:457–482

Marschner, P. (2011). Marschner`s Mineral Nutrition of Higher Plants. 3er Edition. Academic Press. 672p.Oburger, E., Jones, D., & Wenzel, W. (2011). Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant Soil 341:363–382

Ojeda-Barrios, D. L., Hernández-Rodríguez, O. A., Martínez-Tel l e z , J., Núñez-Barrios, A., & Perea-Portillo, E. (2009). Aplicación foliar de quelato de zinc en nogal pecanero. Revista Chapingo serie especial Horticultura 15: 205- 210.

Ojeda-Barrios, D. L., Perea-Portillo, E., Hernández-Rodríguez, A., Ávila-Quezada, G., Abadía, J., & Lombardini, L. (2014). Foliar Fertilization whit Zinc in Pecan Trees. HortScience , 562-566.

Ojeda-Barrios, D., Abadía, J., Lombardini, L., Abadía, A., & Vázquez, S. (2012). Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure. Journal of the Science of Food and Agriculture , 1672-1678.

Parkpain, P., Sreesai, S., & Delaune R. D. (2000). Bioavailability of heavy metals in sewage sludgeamended Thai soils. Water Air Soil Pollution 122, 163-82.

Quijano-Guerta C., Kirk G. J. D., Portugal A. M., Bartolome V. I., & McLaren G., C. (2002). Tolerance of rice germplasm to zinc deficiency. Field Crop Res 76:123–130

Roca Fernández, A. I., Paz González, A., & Vidal Vázquez, E. (2008). Análisis total de los elementos presentes en el suelo tras la adición de compost procedente de RSU. Actas del VIII Congreso SEAE. Murcia. (en prensa).

Rose, M. T., Rose, T. J., Pariasca-Tanaka, J., Widodo, B., & Wissuwa, M. (2011). Revisiting the role of organic acids in the bicarbonate tolerance of zinc-efficient rice genotypes. Funct Plant Biol 38:493–504

Servicio de Información Agroalimentaria y Pesquera (SIAP). (2014). Anuario Estadístico de la Producción Agrícola 2008. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). México.

Sharma, R. K., Agrawal, M., & Marshall, F. M. (2008). Heavy metals (Cu, Cd, Zn and Pb) contamination of vegetables in Urban India: a case study in Varanasi. Environ. Poll. 154, 254-263.Walworth, J., & Pond, A. (2006). Zinc nutrition of pecan growing in alkaline soils. Pecan South. July 14-21p.

Wang, B., Xie, Z., Chen, J., Jiang, J., & SU, Q. (2008). Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil. J. Environ. Sci. 20, 1109-1117.

Weng, L., Vega, F. A., & Van Riemsdijk, W. H. (2011). Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling. Environ Sci Technol 45:8420– 8428

Weng, L., Temminghoff, E. J., & Van Riemsdijk, W. H. (2001). Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ. Sci. Technol., 35: 4436-43.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2016 Revista Chapingo Serie Zonas Áridas